Hướng dẫn giải sách giáo khoa Toán lớp 8 trang 123, 124, 125 tập 2 bài 9: Thể tích của hình chóp đều đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài học sắp tới được tốt nhất.
Thực hiện các bước vẽ hình chóp đều theo chiều mũi tên đã chỉ ra trên hình 128.
Lời giải
Hình 129 là một cái lều ở trại hè của học sinh kèm theo các kích thước.
a) Thể tích không khí bên trong lều là bao nhiêu?
b) Xác định số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp, ... biết √5 ≈ 2,24).
Lời giải:
a) Lều là hình chóp đều có đáy là hình vuông cạnh bằng 2m, chiều cao bằng 2m.
Thể tích không khí trong lều bằng thể tích lều và bằng:
b) Số vải bạt cần thiết đề dựng lều chính là diện tích xung quanh của lều.
Dựng trung đoạn SH.
Tính thể tích của mỗi hình chóp đều dưới đây (h.130, h.131).
Lời giải:
S.MNOPQR là một hình chóp lục giác đều (h.132). Bán kính đường tròn ngoại tiếp đáy (đường tròn tâm H, đi qua sáu đỉnh của đáy) HM = 12cm (h.133), chiều cao SH = 35cm. Hãy tính:
a) Diện tích đáy và thể tích của hình chóp (biết √108 ≈ 10,39);
b) Độ dài cạnh bên SM và diện tích toàn phần của hình chóp (biết √1333 ≈ 36,51).
Lời giải:
a) Tam giác HMN là tam giác đều. Đường cao là :
Diện tích đáy của hình chóp lục giác đều chính là 6 lần diện tích của tam giác đều HMN. Nên:
Thể tích của hình chóp:
b) Trong tam giác vuông SMH có:
Đường cao của mỗi mặt bên là:
Diện tích xung quanh của hình chóp là:
Diện tích toàn phần:
Trong các miếng bìa ở hình 134, miếng nào khi gấp và dán lại thì được một hình chóp đều?
Lời giải:
Hình 1: Khi gấp lại không được hình chóp đều vì hình chóp thu được có đáy là hình chữ nhật. Không là đa giác đều.
Hình 2: Khi gấp lại ta được hình lăng trụ đứng đáy tam giác đều, không phải là hình chóp tam giác đều.
Hình 3: Khi gấp lại không được hình chóp tam giác đều vì hình chóp thu được có được đáy là hình ngũ giác không phải là ngũ giác đều.
Hình 4: Khi gấp lại không được hình chóp đều vì hình thu được là hình chóp đều thiếu một mặt đáy và dư một mặt bên.
Tính diện tích toàn phần của:
a) Hình chóp tứ giác đều, biết cạnh đáy a = 5cm, cạnh bên b = 5cm, √18,75 ≈ 4,33;
b) Hình chóp lục giác đều, biết cạnh đáy a = 6cm, cạnh bên b = 10cm, √3 ≈ 1,73; √91 ≈9,54.
Lời giải:
a) Ta có: Các mặt bên của hình chóp đều là những tam giác đều cạnh 5cm. Đường cao của mỗi mặt bên:
b) Mặt bên của hình chóp lục giác đều là tam giác cân có cạnh bên 10cm, cạnh đáy 6cm.
Diện tích toàn phần của hình chóp là:
Stp = Sxq + Sđ = 171,72 + 93,6 = 265,32(cm2)
Tính diện tích xung quanh của các hình chóp tứ giác đều sau đây (h.135):
Lời giải:
a) Tính thể tích của hình chóp đều (h.136).
b) Tính diện tích xung quanh của hình chóp cụt đều (h.137).
(Hướng dẫn: Diện tích cần tính bằng tổng diện tích các mặt xung quanh. Các mặt xung quanh là những hình thang cân với cùng chiều cao, các cạnh đáy tương ứng bằng nhau, các cạnh bên bằng nhau).
Lời giải:
►► CLICK NGAY vào nút TẢI VỀ dưới đây để giải Toán lớp 8 Sách giáo khoa trang 123, 124, 125 tập 2 file word, pdf hoàn toàn miễn phí.