Hướng dẫn trả lời các câu hỏi trang 32, 33 sách Toán lớp 7 CD Bài 6: Thu thập, phân loại và biểu diễn dữ liệu đầy đủ và chính xác nhất, mời các em học sinh và phụ huynh cùng tham khảo
Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của mỗi biến cố sau:
a) “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”;
b) “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1”.
Gợi ý đáp án
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 51, 52. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tìm số phần tử của tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) “Số xuất hiện trên thẻ được rút ra là số có một chữ số”;
b) “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1”;
c) “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4”.
Gợi ý đáp án
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có một chữ số” là: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Vì thế, xác suất của biến cố trên là:
b) Có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41.
Vì thế, xác suất của biến cố trên là:
c) Ta có: 4 = 0 + 4 = 1 + 3 = 2 + 2
Có năm kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4” là: 4, 13, 22, 31, 40.
Vì thế, xác suất của biến cố trên là:
Viết ngẫu nhiên một số tự nhiên có hai chữ số. Tìm số phần tử của tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) “Số tự nhiên được viết ra là bình phương của một số tự nhiên”;
b) “Số tự nhiên được viết ra là bội của 15”;
c) “Số tự nhiên được viết ra là ước của 120”.
Gợi ý đáp án
Tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:
D = {10, 11, 12, …, 97, 98, 99}
Số phần tử của D là 90
a) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số tự nhiên” là: 16, 25, 36, 49, 64, 81.
Vì thế, xác suất của biến cố trên là:
b) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bội của 15” là: 15, 30, 45, 60, 75, 90.
Vì thế, xác suất của biến cố trên là:
c) Có tám kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là ước của 120” là: 10, 12, 15, 20, 24, 30, 40, 60.
Vì thế, xác suất của biến cố trên là:
Tổ I của lớp 7D có 5 học sinh nữ là: Ánh, Châu, Hương, Hoa, Ngân và 5 học sinh nam là: Bình, Dũng, Hùng, Huy, Việt. Chọn ra ngẫu nhiên một học sinh trong Tổ I của lớp 7D. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) “Học sinh được chọn ra là học sinh nữ”;
b) “Học sinh được chọn ra là học sinh nam”.
Gợi ý đáp án
Tập hợp E gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:
E = {Ánh, Châu, Hương, Hoa, Ngân, Bình, Dũng, Hùng, Huy, Việt}
Số phần tử của E là 10
a) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nữ” là: Ánh, Châu, Hương, Hoa, Ngân.
Vì thế, xác suất của biến cố trên là:
b) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nam” là: Bình, Dũng, Hùng, Huy, Việt.
Vì thế, xác suất của biến cố trên là:
Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước: Việt Nam, Ấn Độ, Ai Cập, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) “Học sinh được chọn ra đến từ châu Á”;
b) “Học sinh được chọn ra đến từ châu Âu”;
c) “Học sinh được chọn ra đến từ châu Mỹ”;
d) “Học sinh được chọn ra đến từ châu Phi”;
Gợi ý đáp án
Tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra là:
G = {học sinh đến từ Việt Nam, học sinh đến từ Ấn Độ, học sinh đến từ Ai Cập, học sinh đến từ Brasil, học sinh đến từ Canada, học sinh đến từ Tây Ban Nha, học sinh đến từ Đức, học sinh đến từ Pháp, học sinh đến từ Nam Phi}
Số phần tử của G là 9
a) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Á” là: học sinh đến từ Việt Nam, học sinh đến từ Ấn Độ.
Vì thế, xác suất của biến cố trên là:
b) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Âu” là: học sinh đến từ Tây Ban Nha, học sinh đến từ Đức, học sinh đến từ Pháp.
Vì thế, xác suất của biến cố trên là:
c) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Mỹ” là: học sinh đến từ Brasil, học sinh đến từ Canada.
Vì thế, xác suất của biến cố trên là
d) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Phi” là: học sinh đến từ Ai Cập, học sinh đến từ Nam Phi.
Vì thế, xác suất của biến cố trên là:
Trên đây là nội dung gợi ý trả lời các câu hỏi và bài tập trong SGK Toán 7 Tập 2 Bài 6 chương 5 trang 32, 33 bộ sách Cánh diều chi tiết và dễ hiểu nhất. Ngoài ra các bạn có thể tham khảo các bài tập khác cùng bộ sách đã được đăng tải trên chuyên trang của chúng tôi.
CLICK NGAY vào TẢI VỀ để download Giải Toán 7 Cánh diều Bài 6: Thu thập, phân loại và biểu diễn dữ liệu trang 32, 33 file PDF hoàn toàn miễn phí.