Hướng dẫn giải sách giáo khoa Toán lớp 8 trang 59, 60, 61, 62, 63, 64 tập 2 bài 2: Định lí đảo và hệ quả của định lí Ta-lét đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài học sắp tới được tốt nhất.
Tam giác ABC có AB = 6cm; AC = 9cm.
Lấy trên cạnh AB điểm B', trên cạnh AC điểm C' sao cho AB' = 2cm; AC' = 3cm (h.8).
1) So sánh các tỉ số
2) Vẽ đường thẳng a đi qua B' và song song với BC, đường thẳng a cắt AC tại điểm C''.
a) Tính độ dài đoạn thẳng AC''.
b) Có nhận xét gì về C và C' và về hai đường thẳng BC và B'C'?
Lời giải
b) Trên đoạn thẳng AC ta có: AC’= AC’’= 3 cm nên
Khi đó, hai đường thẳng BC và B’C’ song song với nhau.
Quan sát hình 9.
a) Trong hình đã cho có bao nhiêu cặp đường thẳng song song với nhau?
b) Tứ giác BDEF là hình gì?
c) So sánh các tỉ số
Lời giải
a) Trong hình có hai cặp cạnh song song: DE // BC và EF // AB
b) Tứ giác BDEF là hình bình hành vì có các cặp cạnh đối song song với nhau
c) Tứ giác BDEF là hình bình hành ⇒ DE = BF = 7
Ba cạnh của ΔADE tương ứng tỉ lệ với ba cạnh của ΔABC
Tính độ dài x của các đoạn thẳng trong hình 12.
Lời giải
Áp dụng định lí Ta – lét ta có:
- Hình a:
- Hình b:
- Hình c:
Tìm các cặp đường thẳng song song trong hình 13 và giải thích vì sao chúng song song.
Lời giải:
Tính các độ dài x, y trong hình 14.
Lời giải:
a) Để chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau, người ta đã làm như hình 15.
Hãy mô tả cách làm trên và giải thích vì sao các đoạn thẳng AC, CD, DB bằng nhau?
b) Bằng cách làm tương tự, hãy chia đoạn thẳng AB cho trước thành 5 đoạn bằng nhau. Hỏi có cách nào khác với cách làm như trên mà vẫn có thể chia đoạn thẳng AB cho trước thành 5 đoạn thẳng bẳng nhau?
Lời giải:
a) - Mô tả cách làm:
+ Vẽ đoạn thẳng PQ song song với AB, PQ có độ dài bằng 3 đơn vị.
+ E, F nằm trên PQ sao cho PE = EF = FQ = 1. Xác định giao điểm O của hai đoạn thẳng PB và QA
+ Vẽ các đường thẳng EO, FO cắt AB tại C và D.
- Chứng minh AC = CD = DB:
b) Tương tự chia đoạn thẳng AB thành 5 đoạn bằng nhau thực hiện như hình vẽ sau
Ngoài cách trên, ta có thể chia một đoạn thẳng thành 5 đoạn bằng nhau bằng cách vẽ thêm một đoạn thẳng AC bằng 5 đơn vị, chia đoạn thẳng AC thành 5 đoạn thẳng bằng nhau, mỗi đoạn bằng 1 đơn vị: AD = DE = EF = FG = GC.
Từ các điểm D, E, F, G ta kẻ các đường thẳng song song với BC, cắt AB tại H, I, J, K. Khi đó ta thu được các đoạn thẳng AH = HI = IJ = JK = KB.
Cho tam giác ABC và điểm D trên cạnh AB sao cho AD = 13,5cm, DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.
Lời giải:
Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.
Ta có AB = AD + DB
=> AB = 13,5 + 4,5 = 18 (cm)
Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Ta-lét ta có:
Tam giác ABC có đường cao AH. Đường thẳng d song song với BC cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B', C' và H' (h.16).
Lời giải:
a) Theo hệ quả định lý Ta let ta có:
ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒
ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒
Tam giác ABC có BC = 15cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC (h.17).
a) Tính độ dài các đoạn thẳng MN và EF.
b) Tính diện tích tứ giác MNFE, biết rằng diện tích của tam giác ABC là 270cm2.
Hình 17
Lời giải:
a) Áp dụng hệ quả định lý Ta-let ta có:
ΔABC có MN // BC (M ∈ AB, N ∈ AC) ⇒
ΔAHC có KN // HC (K ∈ AH, N ∈ AC) ⇒
Chứng minh tương tự ta có:
Mà ta có:
b) Ta có:
Có thể đo được chiều rộng của một khúc sông mà không cần phải sang bờ bên kia hay không?
Người ta tiến hành đo đạc các yếu tố hình học cần thiết để tính chiều rộng của khúc sông mà không cần phải sang bờ sông bên kia (h.18). Nhìn hình vẽ đã cho, hãy mô tả những công việc cần làm và tính khoảng cách AB = x theo BC = a, B'C' = a', BB' = h.
Hình 18
Lời giải:
Mô tả cách làm:
- Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.
- Trên hai đường thẳng vuông góc với AB' tại B và B' lấy C và C' thằng hàng với A.
- Đo độ dài các đoạn BB' = h, BC = a, B'C' = a'.
►► CLICK NGAY vào nút TẢI VỀ dưới đây để giải Toán lớp 8 Sách giáo khoa trang trang 59, 60, 61, 62, 63, 64 tập 2 file word, pdf hoàn toàn miễn phí.