Series các bài giải hệ thống bài tập trong sách giáo khoa và sách bài tập Toán lớp 12, hỗ trợ các em tiết kiệm thời gian ôn luyện đạt hiệu quả nhất thông qua các phương pháp giải các dạng toán hay, nhanh và chính xác nhất. Dưới đây là lời giải bài tập SGK Bài 2 (Chương 3): Tích phân từ đội ngũ chuyên gia giàu kinh nghiệm biên soạn và chia sẻ.
Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = 2x + 1, trục hoành và hai đường thẳng x = 1, x = t (1 ≥ t ≥ 5) (H.45).
1. Tính diện tích S của hình T khi t = 5 (H.46).
2. Tính diện tích S(t) của hình T khi x ∈ [1; 5].
Lời giải:
1. Kí hiệu A là điểm có tọa độ (1,0), D là điểm có tọa độ (5,0). B, C lần lượt là giao điểm của đường thẳng x = 1 và x = 5 với đường thẳng y = 2x + 1.
- Khi đó B và C sẽ có tọa độ lần lượt là (1,3) và (5,11).
- Ta có: AB = 3, CD = 11, AD = 4. Diện tích hình thang:
2. Kí hiệu A là điểm có tọa độ (1,0), D là điểm có tọa độ (5,0). B, C lần lượt là giao điểm của đường thẳng x = 1 và x = 5 với đường thẳng y = 2x + 1.
- Khi đó ta có B (1,3) và C(t, 2t + 1).
- Ta có AB = 3, AD = t – 1, CD = 2t + 1.
- Khi đó diện tích hình thang:
Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).
Lời giải:
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Hãy chứng minh các tính chất 1 và 2.
Lời giải:
Cho tích phân:
1. Tính I bằng cách khai triển (2x +1)2.
2. Đặt u = 2x + 1. Biến đổi biểu thức (2x +1)2dx thành g(u)du.
3. Tính
a) Hãy tính ∫ (x + 1)exdx bằng phương pháp tính nguyên hàm từng phần.
b) Từ đó tính:
Lời giải:
Tính các tích phân sau:
Lời giải:
Tính các tích phân sau:
Lời giải:
Sử dụng phương pháp đổi biến, hãy tính:
Lời giải:
Sử dụng phương pháp tích phân từng phần, hãy tính:
Lời giải:
Theo công thức tích phân từng phần ta có:
Theo công thức tích phân từng phần ta có:
Theo công thức tích phân từng phần:
Theo công thức tích phân từng phần:
Theo công thức tích phân từng phần:
Tính các tích phân sau:
Lời giải:
Tính
a) Đổi biến số u = 1 – x;
b) Tính tích phân từng phần.
Lời giải:
a) Đặt u = 1 – x;
⇒ du = -dx
Đổi biến :
Theo công thức tích phân từng phần:
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải bài tập Toán 12 Bài 2: Tích phân (Hay nhất) file Word, pdf hoàn toàn miễn phí!