Kì thi học giữa học kì 1 sắp tới, nhu cầu tìm kiến nguồn tài liệu chính thống có hướng dẫn giải chi tiết của các em học sinh là vô cùng lớn. Thấu hiểu điều đó, chúng tôi xin chia sẻ Bộ 4 đề thi giữa kì 1 Toán 8 2020 được biên soạn bám sát cấu trúc cùng nội dung thi trên lớp của các em học sinh lớp 6, từ đó hỗ trợ các em định hướng kiến thức, sắp xếp thời gian làm bài hợp lý nhằm đạt kết quả tốt nhất. Nội dung đề bài và lời giải chi tiết được chúng tôi chia sẻ dưới đây.
Đề thi Giữa kì 1 - Năm học ....
Môn Toán lớp 8
Thời gian làm bài: 90 phút
Câu 1 (2 điểm) Phân tích đa thức thành nhân tử
a. 8x2 - 8xy - 4x + 4y b. x3 + 10x2 + 25x - xy2
c. x2 + x - 6 d. 2x2 + 4x - 16
Câu 2 (2 điểm) Tìm giá trị của x, biết:
a. x3 - 16x = 0 b. (2x + 1)2 - (x - 1)2 = 0
Câu 3 (2 điểm) Chứng minh biểu thức sau không phụ thuộc vào x
a. A = (2x - 1)(4x2 + 2x + 1) - (2x + 1)(4x2 - 2x + 1)
b. B = x(2x + 1) - x2(x + 2) + x3 - x + 5
Câu 4 (1 điểm) Tính giá trị nhỏ nhất của biểu thức P = x2 - 2xy + 6y2 - 12x + 2y + 45
Câu 5 (2 điểm) Cho hình thang ABDC (AB // CD). Trên cạnh AD lấy điểm M và N sao cho AM = MN = NC. Từ M và N kẻ các đường thẳng song song với hai đáy cắt BC theo thứ tự E và F. Chứng minh rằng:
a. BE = EF = FD
b. Cho CD = 8cm, ME = 6cm. Tính độ dài AB và FN
Câu 6 (0.5 điểm) Cho x, y, z là các số dương. Tìm giá trị nhỏ nhất của:
Đáp án và Hướng dẫn làm bài
Câu 1:
a. 8x2 - 8xy - 4x + 4y = 8x(x - y) - 4(x - y) = (x - y)(8x - 4) = 4(x - y)(2x - 1)
b.
x3 + 10x2 + 25x - xy2 = x(x2 + 10x + 25 - y2) = x[(x - 5)2 - y2] = x(x - 5 - y)(x - 5 + y)
c. x2 + x - 6 = x2 - 2x + 3x - 6 = x(x - 2) + 3(x - 2) = (x - 2)(x + 3)
d.
2x2 + 4x - 16 = 2(x2 - 2x - 8) = 2(x2 - 2x + 1 - 9)
= 2[(x - 1)2 - 9] = 2(x - 1 - 9)(x - 1 + 9) = 2(x - 10)(x + 8)
Câu 2:
a. x3 - 16x = 0
x(x2 - 16) = 0
x(x - 4)(x + 4) = 0
Suy ra x = 0, x = 4, x = -4
b. (2x + 1)2 - (x - 1)2 = 0
(2x + 1 - x + 1)(2x + 1 + x - 1) = 0
(x + 2)(3x) = 0
Suy ra x = 0 hoặc x = -2
Câu 3:
a. A = (2x - 1)(4x2 + 2x + 1) - (2x + 1)(4x2 - 2x + 1)
A = (2x)3 - 1 - [(2x)3 + 1]
A = 8x3 - 1 - 8x3 - 1
A = -2
Vậy giá trị của biểu thức A không phụ thuôc vào giá trị của x.
b. B = x(2x + 1) - x2(x + 2) + x3 - x + 5
B = 2x2 + x - x3 - 2x2 + x3 - x + 5
B = 5
Vậy biểu thức không phụ thuộc vào x
Câu 4:
Câu 5:
a. Ta có ABCD là hình thang AB // CD
Ta có AB // CD, FN // CD suy ra AB // NF
Vậy ABFN là hình thang (dấu hiệu nhận biết).
Xét hình thang ABFN có ME // NF, ME = NF nên ME là đường trung bình của hình thang ABFN
Suy ra BE = EF.
Xét tương tự với hình thang MEDC ta suy ra EF = FD
Ta có điều phải chứng minh.
b. Theo chứng minh trên ta có
Câu 6:
Đề thi Giữa kì 1 - Năm học ....
Môn Toán lớp 8
Thời gian làm bài: 90 phút
Phần 1: Trắc nghiệm (2 điểm)
Hãy viết chữ cái in hoa đứng trước phương án đúng trong mỗi câu sau vào bài làm.
Câu 1: Kết quả phép tính x(x - y) + y(x + y) tại x = -3 và y = 4 là:
A. 1 B. 7 C. -25
Câu 2: Khai triển biểu thức (x - 2y)3 ta được kết quả là:
A. x3 - 8y3 B. x3 - 2y3
C. x3 - 6x2y + 6xy2 - 2y3 D. x3 - 6x2y + 12xy2 - 8y3
Câu 3: Giá trị biểu thức 20092 - 2018.2009 + 10092 có bao nhiêu chữ số 0 ?
A. 6 B. 2 C. 4
Câu 4: Đa thức 4x2 - 12x + 9 phân tích thành nhân tử là:
A. (2x - 3)2 B. 2x + 3 C. 4x - 9
Câu 5: Hình nào sau đây là tứ giác có hai đường chéo bằng nhau?
A. Hình thang B. Hình thang cân
C. Hình thang vuông D. Hình bình hành
Câu 6: Cho tam giác ABC có cạnh BC = 8cm và D, E, M, N lần lượt là trung điểm của AB, AC, BD và CE (như hình vẽ). Khi đó, độ dài của MN là
A. 7cm B. 5cm C. 6cm D. 4cm
Câu 7: Cho hình bình hành ABCD có ∠A = 60o. Khi đó, hệ thức nào sau đây là không đúng?
Câu 8: Hình chữ nhật có độ dài cạnh 5cm và 12cm thì khoảng cách từ giao điểm hai đường chéo đến mỗi đỉnh là
A. 17cm B. 8,5cm C. 6,5cm D. 13cm
Phần 2: Tự luận (8 điểm)
Câu 1 (VD) (2,25 điểm)
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2 (VD) (0,75 điểm)
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3 (VD) (1,0 điểm)
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 (VD) (3,0 điểm) Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 (VDC) (1,0 điểm) Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Đáp án và Hướng dẫn làm bài
Phần 1: Trắc nghiệm (2 điểm)
Câu 1:
Thay x = -3 và y = -4 vào biểu thức x(x - y) + y(x + y) ta được:
(-3)(-3 - 4) + 4(-3 + 4) = 21 + 4 = 25
Chọn D.
Câu 2:
Ta có:
(x - 2y3 = x3 - 3x2.2y + 3x.(2y)2 + (2y)3 = x3 - 6x2y + 12xy2 - 8y3
Chọn D.
Câu 3:
20092 - 2018.2009 + 10092
20092 - 2.2009.1009 + 10092
= (2009 - 1009)2
= 10002
= 1000000
Vậy giá trị của biểu thức 20092 - 2018.2009 + 10092 có 6 chữ số 0.
Chọn A.
Câu 4:
4x2 - 12x + 9 = (2x)2 - 2.2x.3 + 32 = (2x - 3)2
Chọn A.
Câu 5:
Quan sát hình vẽ, và áp dụng tính chất của các hình ta có: Hình thang cân là hình có hai đường chéo bằng nhau.
Chọn B.
Câu 6:
Chọn D.
Câu 7:
Vì ABCD là hình bình hành nên ta có: ∠A = ∠C, ∠B = ∠D và AB // CD, AD // BC
Mà ∠A = 60o ⇒ ∠C = 60o
⇒ Đáp án C đúng.
Vì AD // BC mà ∠A và ∠B ở vị trí trong cùng phía nên ta có: ∠A + ∠B = 180o ⇒ ∠B = 120o
⇒ ∠B = 2∠C ⇒ Đáp án B đúng.
⇒ ∠A = ∠B/2 ⇒ Đáp án D đúng.
Vì AB // CD mà ∠A và ∠D ở vị trí trong cùng phía nên ta có: ∠A + ∠D = 180o ⇒ ∠D = 120o
⇒ Đáp án A sai.
Chọn A.
Câu 8:
Chọn C.
Phần 2: Tự luận
Bài 1.
a.
2x(3x + 2) - 3x(2x + 3)
= 2x.3x + 2x.2 - 3x.2x - 3x.3
= 6x2 + 4x - 6x2 - 9x
= -5x
b.
(x + 2)3 + (x - 3)3 - x2(x + 5)
= (x3 + 6x2 + 12x + 8) + (x2 - 6x + 9) - (x3 + 5x2)
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= (x3 - x3) + (6x2 + x2 - 5x2) + (12x - 6x) + 9
= 2x2 + 6x + 9
c.
Bài 2.
2x3 - 12x2 + 18x
= 2x(x2 - 6x + 9)
= 2x(x - 3)2
Bài 3.
3x(x - 5) - x2 + 25 = 0
3x(x - 5) - (x2 + 25) = 0
3x(x - 5) - (x + 5)(x - 5) = 0
(3x - x - 5)(x - 5) = 0
(2x - 5)(x - 5) = 0
Bài 4.
Mà E, K lần lượt là trung điểm của CD và AB nên AK = EC VÀ AK // EC.
⇒ Tứ giác AECK là hình bình hành (dấu hiệu nhận biết)
b. Trong hình bình hành ABCD có O là giao điểm của hai đường chéo nên O là trung điểm của AC và BD (tính chất của hình bình hành)
Mà AECK là hình bình hành nên O là trung điểm của EK.
⇒ Ba điểm E, O, K thẳng hàng.
Bài 5.
P = x2 + 5y2 + 4xy + 6x + 16y + 32
⇒ P = x2 + (4xy + 6x) + 5y2 + 16y + 32
⇒ P = x2 + 2x(2y + 3) + (2y + 3)2 - (2y + 3)2 + 5y2 + 16y + 32
⇒ P = [x + (2y + 3)]2 - 4y2 - 12y - 9 + 5y2 + 16y + 32
⇒ P = (x + 2y + 3)2 + y2 + 4y + 23
⇒ P = (x + 2y + 3)2 + (y + 2)2 + 19
Vì (x + 2y + 3)2 ≥ 0 với mọi x, y ∈ R
(y + 2)2 ≥ 0 với mọi y ∈ R
⇒ P = (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x, y ∈ R
Dấu "=" xảy ra khi và chỉ khi x + 2y + 3 = 0 và y + 2 =0
Suy ra, x = 1 và y = -2
Vậy P đạt giá trị nhỏ nhất bằng 19 tại x = 1 và y = -2.
→Còn tiếp:...............................
Tải trọn bộ 4 đề thi giữa kì 1 môn toán lớp 8 tại đường link dưới đây =>>>
Hy vọng bộ tài liệu chúng tôi dày công sưu tầm và biên soạn này sẽ hỗ trợ các em ôn luyện chuẩn bị kì kiểm tra sắp tới đạt kết quả cao nhất. Chúc các em thành công!
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích hỗ trợ ôn luyện thi môn toán như đề kiểm tra, hướng dẫn giải sách giáo khoa, vở bài tập được cập nhật liên tục tại chuyên trang của chúng tôi.