Logo

Giải SBT Toán hình học 8 trang 80 tập 1 Bài 1: Tứ giác hay nhất

Giải SBT Toán hình lớp 8 trang 80 tập 1 Bài 1: Tứ giác đầy đủ hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách bài tập
5.0
1 lượt đánh giá

Giải sách bài tập Toán hình 8 trang 80 tập 1 Bài 1: Tứ giác các phân thức đại số được giải đáp chi tiết và rõ ràng nhất, giúp cho các bạn học sinh có thể tham khảo và chuẩn bị tốt nhất cho bài học sắp tới nhé.

Giải bài 1 SBT Toán hình lớp 8 tập 1 trang 80

Tính tổng các góc ngoài của tứ giác (tai mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).

Lời giải:

Ta có: ∠A1 + ∠B1 + ∠C1 + ∠D1 = 360o (tổng các góc của tứ giác)

+) Lại có: ∠A1 + ∠A2 = 180o ( hai góc kề bù).

∠B1 + ∠B2 = 180o (hai góc kề bù)

∠C1 + ∠C2 = 180o (hai góc kề bù)

∠D1 + ∠D2 = 180o (hai góc kề bù)

Suy ra: ∠A1 + ∠A2 + ∠B1 + ∠B2 + ∠C1 + ∠C2 + ∠D1 + ∠D2 = 180o.4 = 720o

⇒ ∠A2 + ∠B2 + ∠C2 + ∠D2 = 720o – (∠A1 + ∠B1 + ∠C1 + ∠D1)

= 720o – 360o = 360o

Giải bài 2 trang 80 SBT lớp 8 Toán hình tập 1

Tứ giác ABCD có AB = BC, CD = DA.

a. Chứng minh rằng BD là đường trung trực của AC.

b. Cho biết B = 100o, D = 70o, tính góc A và góc C.

Lời giải:

a. Ta có: BA = BC (gt). Suy ra điểm B thuộc đường trung trực của AC.

Lại có: DA = DC (gt). Suy ra điểm D thuộc đường trung trực của AC.

Vì B và D là 2 điểm phân biệt cùng thuộc đường trung trực của AC nên đường thẳng BD là đường trung trực của AC.

b. Xét ΔBAD và ΔBCD, ta có:

BA = BC (gt)

DA = DC (gt)

BD cạnh chung

Suy ra: ΔBAD = ΔBCD (c.c.c)

⇒ ∠(BAD) = ∠(BCD)

Mặt khác, ta có: ∠(BAD) + ∠(BCD) + ∠(ABC) + ∠(ADC) = 360o

Suy ra: ∠(BAD) + ∠(BCD) = 360o – (∠(ABC) + ∠(ADC) )

2∠(BAD) = 360o – (100o + 70o) = 190o

⇒ ∠(BAD) = 190o : 2 = 95o

⇒ ∠(BCD) = ∠(BAD) = 95o

Giải bài 3 Toán hình lớp 8 SBT trang 80 tập 1

Vẽ lại tứ giác ABCD ở hình 1 vào vở bằng cách vẽ hai tam giác

Lời giải:

- Vẽ tam giác ABD

      + Vẽ cạnh AD dài 4cm

      + Tại A vẽ cung tròn tâm A bán kính 2,5cm

      + Tại D vẽ cung tròn tâm D bán kính 3cm

      + Hai cung tròn cắt nhau tại B

⇒ Ta được tam giác ABD

- Vẽ tam giác DBC

      + Dùng thước đo độ vẽ tia Bx sao cho góc DBx = 60o

      + Trên Bx xác định C sao cho BC = 3cm

⇒ Ta được tam giác BDC

⇒Ta được tứ giác ABCD cần vẽ

Giải bài 4 trang 80 tập 1 SBT Toán hình lớp 8

Tính các góc của tứ giác ABCD, biết rằng: ∠A: ∠B: ∠C: ∠D= 1 : 2 : 3 : 4

Lời giải:

Theo bài ra, ta có:

 ∠A+ ∠B+ ∠C+ ∠D= 360o (tổng các góc của tứ giác)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

Vậy: ∠A= 1.36o = 36o;            ∠B= 2.36o = 72o;

      ∠C= 3.36o = 108o ;            ∠D= 4.36o = 144o.

Giải bài 5 SBT Toán hình trang 80 tập 1 lớp 8

Tứ giác ABCD có ∠A = 65o, ∠B = 117o, ∠C = 71o. Tính số đo góc ngoài tại đỉnh D.

Lời giải:

Trong tứ giác ABCD, ta có:

∠A + ∠B + ∠C + ∠D = 360o (tổng các góc của tứ giác)

⇒ ∠D = 360o – (∠A + ∠B + ∠C )

= 360o – (65o + 117o + 71o) = 107o

∠D + ∠D1 = 180o (2 góc kề bù) ⇒ ∠D1 = 180o - ∠D = 180o – 107o = 73o

Giải bài 6 trang 80 SBT Toán hình 8 tập 1

Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù.

Lời giải:

Giả sử cả bốn góc của tứ giác đều là góc nhọn ( tức là mỗi góc có số đo nhỏ hơn 90o) thì tổng bốn góc của tứ giác nhỏ hơn:

90o + 90o+ 90o+ 90o = 360o.

Vậy bốn góc của tứ giác không thể đều là góc nhọn.

Giả sử cả bốn góc của tứ giác đều là góc tù ( tức là mỗi góc có số đo lớn hơn 90o) thì tổng bốn góc của tứ giác lớn hơn:

90o+ 90o+90o+90o = 360o.

Vậy bốn góc của tứ giác không thể đều là góc tù.

Giải bài 7 Toán hình SBT lớp 8 trang 80 tập 1

Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tại các đỉnh B và D.

Lời giải:

* Gọi ∠A1, ∠C1là góc trong của tứ giác tại đỉnh A và C, ∠A2, ∠C2là góc ngoài tại đỉnh A và C.

Ta có: ∠A1+ ∠A2 = 180o (2 góc kề bù)

⇒ ∠A2= 180o - ∠A1

∠C1+ ∠C2= 180o (2 góc kề bù) ⇒ ∠C2= 180o - ∠C1

Suy ra: ∠A2+ ∠C2= 180o - ∠A1+ 180o - ∠C1= 360o – (∠A1 + ∠C1) (1)

* Trong tứ giác ABCD ta có:

∠A1+ B + ∠C1 + ∠D = 360o (tổng các góc của tứ giác)

⇒ ∠B + ∠D = 360o - (∠A1 + ∠C1) (2)

Từ (1) và (2) suy ra: ∠A2+ ∠C2 = ∠B + ∠D

Giải bài 8 lớp 8 SBT Toán hình tập 1 trang 80

Tứ giác ABCD có A = 110o, B = 100o. Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau tại F. Tính.

Lời giải:

Trong tứ giác ABCD, ta có: ∠A + ∠B + ∠C + ∠D = 360o

⇒ ∠C + ∠D = 360o - (∠A + ∠B) = 360o – (110o + 100o) = 150o

Do DE và CE lần lượt là tia phân giác của góc 

Trong ΔCED ta có:

∠CED = 180o – (∠C1 + ∠D1) = 180o – 75o = 105o

DE ⊥ DF (t/chất tia phân giác của hai góc kề bù) ⇒ ∠EDF = 90o

CE ⊥ CF (t/chất tia phân giác của hai góc kề bù) ⇒ ∠ECF = 90o

Trong tứ giác CEDF, ta có: ∠DEC + ∠EDF + ∠DFC + ∠ECF = 360o

⇒ ∠DFC = 360o - (∠DEC + ∠EDF + ∠ECF) = 360o - (105o - 90o - 90o) = 75o

Giải bài 9 trang 80 Toán hình tập 1 lớp 8 SBT

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Lời giải:

Gọi O là giao điểm của hai đường chéo AC và BD

* Trong ΔOAB, ta có:

OA + OB > AB (bất đẳng thức tam giác) (1)

* Trong ΔOCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

Giải bài 10  SBT Toán hình tập 1 lớp 8 trang 80

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó.

Lời giải:

Đặt độ dài a = AB, b = BC, c = CD, d = AD

Gọi O là giao điểm 2 đường chéo AC và BD.

* Trong ΔOAB, ta có:

OA + OB > a (bất đẳng thức tam giác) (1)

* Trong ΔOCD, ta có:

OC + OD > c (bất đẳng thức tam giác) (2)

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c hay AC + BD > a + c (*)

* Trong ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)

* Trong ΔOBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra:

OA + OB + OC + OD > b + d hay AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

* Trong ΔABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)

* Trong ΔADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)

Suy ra: 2AC < a + b + c + d

* Trong ΔABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)

* Trong ΔBCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)

Suy ra: 2BD < a + b + c + d

Từ (5) và (6) suy ra: AC + BD < a + b + c + d

►► CLICK NGAY vào nút TẢI VỀ dưới đây để download Giải sách bài tập Toán hình lớp 8 tập 1 trang 80 file word, pdf hoàn toàn miễn phí.

Đánh giá bài viết
5.0
1 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com