Logo

Giải SBT Toán Hình 9 trang 106, 107 Tập 2 (Chính xác nhất)

Giải SBT Toán Hình 9 trang 106, 107 Tập 2: Bài 7: Tứ giác nội tiếp, hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách bài tập.
5.0
1 lượt đánh giá

Giải bài tập sách bài tập Toán Hình lớp 9: Bài 7: Tứ giác nội tiếp, được chúng tôi sưu tầm và đăng tải. Đây là lời giải kèm phương pháp giải hay các bài tập trong chương trình Sách bài tập Toán 9. Là tài liệu tham khảo hữu ích dành cho các em học sinh và quý thầy cô giáo tham khảo và đối chiếu đáp án chính xác, chuẩn bị tốt cho việc tiếp thu, giảng dạy bài học mới đạt hiệu quả.

Bài 7: Tứ giác nội tiếp

 

Bài 39 trang 106 Sách bài tập Toán 9 Tập 2: 

Trên đường tâm O có một cung AB và S là điểm chính giữa của cung đó.Trên dây AB lấy hai điểm E và H.Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D.Chứng minh EHCD là một tứ giác nội tiếp

Lời giải:

Bài 40 trang 106 Sách bài tập Toán 9 Tập 2: 

Cho tam giác ABC.Các đường phân giác trong của góc B và góc C cắt nhau tại S,các đường phân giác ngoài của góc B và góc C cắt nhau tại E.Chứng minh BSCE là một tứ giác nội tiếp

Lời giải:

Ta có: BS ⊥ BE (tính chất đường phân giác của hai góc kề bù)

Suy ra góc SBE = 90o

Và CS ⊥ CE (tính chất đường phân giác của hai góc kề bù)

Suy ra góc SCE = 90o

Xét tứ giác BSCE ta có:

góc SBE + góc SCE = 180o

Vậy tứ giác BSCE nội tiếp đường tròn.

Bài 41 trang 106 Sách bài tập Toán 9 Tập 2: 

Cho tam giác ABC có đáy BC và góc A = 20°.Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm D sao cho DA = DB và góc (DAB) =40°.Gọi E là giao điểm của AB và CD

a.Chứng minh ACBD là một tứ giác nội tiếp

b.Tính góc (AED)

Lời giải:

Bài 42 trang 107 Sách bài tập Toán 9 Tập 2: 

Cho ba đường tròn cùng đi qua một điểm P.Gọi các giao điểm khác P của hai trong ba đường tròn đó là A,B,C.Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB,DC cắt các đường tròn (PAB) ,(PAC) lần lượt tại M,N.Chứng minh ba điểm M,A,N thẳng hàng

Lời giải:

Gọi O1 , O2 ,O3 lần lượt là tâm của ba đường tròn

Ta có: (O1) cắt (O2) tại A, (O2) cắt (O3) tại C , (O3) cắt (O1) tại B

Suy ra: D là điểm nằm trên (O3)

DB cắt (O1) tại M, DC cắt (O2) tại N

Nối MA, NA, PA, PB, PC ta có các tứ giác nội tiếp AMBP, BDCP và APCN

*Tứ giác APBM nội tiếp trong đường tròn (O1) nên ta có:

Bài 43 trang 107 Sách bài tập Toán 9 Tập 2: 

Cho đoạn thẳng AC và BD cắt nhau tại E

Biết AE.EC=BE.ED .Chứng minh bốn điểm A,B,C,D cùng nằm trên một đường tròn

Lời giải:

Ta có: AE.EC=BE.ED (gt)

Suy ra : AE/ED = BE/EC

Xét ΔABE và ΔDCE ta có:

AE/ED = BE/EC

Vì A và D nhìn đoạn BC cố định dưới một góc bằng nhau nên A và D nằm trên một cung chứa góc vẽ trên BC hay bốn điểm A ,B ,C ,D cùng nẳm trên một đường tròn.

Bài tập bổ sung (trang 107)

 

Bài 1 trang 107 Sách bài tập Toán 9 Tập 2: 

Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy.

Gọi H là giao điểm của các đường cao vừa vẽ.

a) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L

b) Chứng minh  là 4 góc bằng nhau.

c) Chứng minh KB là tia phân giác của góc LKI

Lời giải:

Vì ∆ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

a) Tứ giác AKHL có 

Tứ giác AKHL nội tiếp.

Tứ giác BIHL có 

Tứ giác BIHL nội tiếp.

Tứ giác CIHK có 

Tứ giác CIHK nội tiếp.

Tứ giác ABIK có 

K và I nhìn đoạn AB dưới một góc vuông nên tứ giác ABIK nội tiếp. Tứ giác BCKL có 

K và L nhìn đoạn BC dưới một góc vuông nên tứ giác BCKL nội tiếp.

Tứ giác ACIL có góc AIC = 90o; góc ALC = 90o

I và L nhìn đoạn AC dưới một góc vuông nên tứ giác ACIL nội tiếp.

b) Tứ giác BIHL nội tiếp.

=> góc LBH = góc LIH (2 góc nội tiếp cùng chắn cung nhỏ LH) (1)

Tứ giác CIHK nội tiếp.

=> góc HIK = góc HCK (2 góc nội tiếp cùng chắn cung nhỏ HK) (2)

Từ (1), (2) suy ra:

góc LBH = góc LIH = góc KIH = góc KCH (dpcm)

c)

Bài 2 trang 107 Sách bài tập Toán 9 Tập 2: 

Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.

Lời giải:

 

Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.

►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về Giải SBT Toán Hình 9 trang 106, 107: Bài 7: Tứ giác nội tiếp file Word, pdf hoàn toàn miễn phí!

Đánh giá bài viết
5.0
1 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com