Hướng dẫn giải Toán 7 bài 4: Tính chất ba đường trung tuyến của tam giác trang 65, 66, 67 sách giáo khoa được trình bày chi tiết, dễ hiểu dưới đây sẽ giúp các em tham khảo và vận dụng giải các bài tập cùng dạng toán hiệu quả nhất.
Hãy vẽ một tam giác và tất cả các đường trung tuyến của nó.
Lời giải
Ta vẽ ΔABC và 3 đường trung tuyến AM, BN, CP
Trong đó: M, N, P lần lượt là trung điểm BC, AC, AB
Quan sát tam giác vừa cắt (trên đó đã vẽ ba đường trung tuyến). Cho biết: Ba đường trung tuyến của tam giác này có cùng đi qua một điểm hay không?
Lời giải
Ba đường trung tuyến của tam giác này có cùng đi qua một điểm
Dựa vào hình 22, hãy cho biết:
• AD có là đường trung tuyến của tam giác ABC hay không?
• Các tỉ số
bằng bao nhiêu?
Lời giải
• AD có là đường trung tuyến của tam giác ABC
Vì trên hình 22 ta thấy, D là trung điểm BC
(BD = CD = 4 đơn vị độ dài)
• Dựa vào hình vẽ ta thấy:
Cho G là trọng tâm của tam giác DEF với đường trung tuyến DH.
Trong các khẳng định sau đây, khẳng định nào đúng?
Lời giải:
Cho hình 25. Hãy điền số thích hợp vào chỗ trống trong các đẳng thức sau:
a) MG = ... MR; GR = ... MR; GR = ... MG
b) NS = ... NG; NS = ... GS; NG = ... GS
Hình 25
Lời giải:
Từ hình vẽ ta thấy: S, R là hai trung điểm của hai đoạn thẳng trong tam giác nên NS và MR là hai đường trung tuyến.
G là giao của hai đường trung tuyến nên G là trọng tâm của ΔMNS, do đó ta có thể điền:
Biết rằng: Trong một tam giác vuông. Đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền. Hãy giải bài toán sau:
Cho tam giác vuông ABC có hai góc vuông AB = 3cm, AC= 4cm. Tính khoảng cách từ đỉnh A tới trọng tâm G của tam giác ABC.
Lời giải:
Áp dụng định lí Pitago cho ΔABC vuông tại A:
BC2 = AB2 + AC2 = 32 + 42 = 25
=> BC = 5cm
Gọi M là trung điểm của BC và G là trọng tâm của ΔABC.
Theo bài:
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Lời giải:
ΔABC cân => AB = AC
Gọi M, N lần lượt là hai trung điểm của cạnh AB và AC, suy ra:
AN = BN = AM = CM (= AB/2 = AC /2)
Cách 1: Xét ΔBAM và ΔCAN có:
- Góc A chung
- AB = AC
- AM = AN
=> ΔBAM = ΔCAN (c.g.c) => BM = CN (đpcm)
Cách 2: Xét ΔBCM và ΔCBN có:
- Cạnh BC chung
- góc BCM = góc CBN (do ΔABC cân)
- CM = BN
=> ΔBCM = ΔCBN (c.g.c) => BM = CN (đpcm)
(Còn một số cách chứng minh khác, nhưng do giới hạn kiến thức lớp 7 nên mình xin sẽ không trình bày.)
Hãy chứng minh định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Lời giải:
Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Chứng minh ΔDEI = ΔDFI.
b) Các góc DIE và góc DIF là những góc gì?
c) Biết DE = DF = 13cm, EF = 10cm, hãy tính độ dài đường trung tuyến DI.
Lời giải:
a) Xét ΔDEI và ΔDFI có:
- DE = DF (ΔDEF cân)
- DI là cạnh chung.
- IE = IF (DI là trung tuyến)
=> ΔDEI = ΔDFI (c.c.c)
(Cách khác: Nếu bạn thay điều kiện DI là cạnh chung bằng điều kiện góc DEI = góc DFI thì chúng ta có cách chứng minh theo trường hợp c.g.c)
b) Theo câu a) ta có ΔDEI = ΔDFI
c) I là trung điểm của EF nên IE = IF = 5cm
ΔDIE vuông tại I => DI2 = DE2 – EI2 (định lí Pitago)
=>DI2 = 13² – 5² = 144
=>DI = 12
Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA = GB = GC
Hướng dẫn: Áp dụng định lí ở bài tập 26.
Lời giải:
Gọi M, N, P lần lượt là trung điểm của các cạnh BC, AC, AB.
(Lưu ý: Bài này yêu cầu áp dụng định lý ở bài tập 26, do đó ở một số sách giải hay trang web sử dụng câu "Vì ΔABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau" là chưa phù hợp với lời giải bài tập này. Các bạn cần lưu ý.)
Gọi G là trọng tâm của tam giác ABC. Trên tia AG lấy điểm G' sao cho G là trung điểm của AG'.
a) So sánh các cạnh của tam giác BGG' với các đường trung tuyến của tam giác ABC.
b) So sánh các đường trung tuyến của tam giác BGG' với các cạnh của tam giác ABC.
Lời giải:
Vậy mỗi cạnh của ΔBGG' bằng 2/3 đường trung tuyến của ΔABC.
b) Gọi I, K lần lượt là trung điểm của BG và BG'.
Vậy mỗi đường trung tuyến của ΔBGG' bằng một nửa cạnh của ΔABC tương ứng với nó.
CLICK NGAY vào nút TẢI VỀ dưới đây để tải gaiir toán lớp 7 trang 65, 66, 67 file word, pdf hoàn toàn miễn phí