Hướng dẫn giải sách giáo khoa Toán lớp 8 trang 64, 65, 66, 67 tập 1: Tứ giác ẩn đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài học sắp tới được tốt nhất.
Trong các tứ giác ở hình 1, tứ giác nào luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác?
Lời giải
a) Tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác
b) Tứ giác nằm trên hai nửa mặt phẳng có bờ BC (hoặc bờ CD)
c) Tứ giác nằm trên hai nửa mặt phẳng có bờ AD (hoặc bờ BC)
Quan sát tứ giác ABCD ở hình 3 rồi điền vào chỗ trống:
a) Hai đỉnh kề nhau: A và B, …
Hai đỉnh đối nhau: A và C, …
b) Đường chéo (đoạn thẳng nối hai đỉnh đối nhau): AC, …
c) Hai cạnh kề nhau: AB và BC, …
Hai cạnh đối nhau: AB và CD, …
d) Góc: ∠A, …
Hai góc đối nhau: ∠A và ∠C , …
e) Điểm nằm trong tứ giác (điểm trong của tứ giác): M, …
Điểm nằm ngoài tứ giác (điểm ngoài của tứ giác): N, …
Lời giải
a) Hai đỉnh kề nhau: A và B, B và C, C và D, D và A
Hai đỉnh đối nhau: A và C, B và D
b) Đường chéo (đoạn thẳng nối hai đỉnh đối nhau): AC, BD
c) Hai cạnh kề nhau: AB và BC, BC và CD, CD và DA, DA và AB
Hai cạnh đối nhau: AB và CD, AD và BC
d) Góc: ∠A, ∠B, ∠C, ∠D
Hai góc đối nhau: ∠A và ∠C, ∠B và ∠D
e) Điểm nằm trong tứ giác (điểm trong của tứ giác): M, P
Điểm nằm ngoài tứ giác (điểm ngoài của tứ giác): N, Q
a) Nhắc lại định lý về tổng ba góc của một tam giác
b) Vẽ tứ giác ABCD tùy ý. Dựa vào định lý về tổng ba góc của một tam giác, hãy tính tổng A + B + C + D
Lời giải
a) Trong một tam giác, tổng ba góc là 180o
b)
ΔABC có ∠A1 + ∠B + ∠C1 = 180o
ΔADC có ∠A2 + ∠D + ∠C2 = 180o
⇒ ∠A1 + ∠B + ∠C1 + ∠A2 + ∠D + ∠C2 = 180o + 180o
⇒ (∠A1 + ∠A2 ) + ∠B + (∠C1 + ∠C2) + ∠D = 360o
⇒ ∠A + ∠B + ∠C + ∠D = 360o
Tìm x ở hình 5, hình 6:
Lời giải:
(Áp dụng: tổng 4 góc trong một tứ giác bằng 360o)
- Ở hình 5:
a) x = 360o - (110o + 120o + 80o) = 50o
b) x = 360o - (90o + 90o + 90o) = 90o
c) x = 360o - (90o + 90o + 65o) = 115o
d) x = 360o - (75o + 120o + 90o) = 75o
- Ở hình 6:
a) x + x = 360o - (65o + 95o)
b) 2x + 3x + 4x + x = 360o
=> 10x = 360o
=> x = 36o
Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.
a) Tính các góc ngoài của tứ giác ở hình 7a.
b) Tính tổng các góc ngoài của tứ giác ở hình 7b ( tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài):
c) Có nhận xét gì về tổng các góc ngoài của tứ giác?
Lời giải:
+ Góc ngoài tại A là góc A1:
+ Góc ngoài tại B là góc B1:
+ Góc ngoài tại C là góc C1:
+ Góc ngoài tại D là góc D1:
Theo định lý tổng các góc trong một tứ giác bằng 360º ta có:
Lại có:
Vậy góc ngoài tại D bằng 105º.
b) Hình 7b:
Ta có:
Mà theo định lý tổng bốn góc trong một tứ giác bằng 360º ta có:
c) Nhận xét: Tổng các góc ngoài của tứ giác cũng bằng 360º.
Ta gọi tứ giác ABCD trên hình 8 có AB = AD, CB = CD là hình "cái diều".
a) Chứng minh rằng AC là đường trung trực của BD.
b) Tính B̂,D̂ biết rằng  = 100º, Ĉ = 60º
Lời giải:
a) Ta có:
AB = AD (gt) => A thuộc đường trung trực của BD
CB = CD (gt) => C thuộc đường trung trực của BD
Vậy AC là đường trung trực của BD
b) Xét ΔABC và ΔADC có:
AB = AD (gt)
BC = DC (gt)
AC cạnh chung
=> ΔABC = ΔADC (c.c.c)
Suy ra:
Dựa vào cách vẽ các tam giác đã học, hãy vẽ lại các tứ giác ở hình 9, hình 10 vào vở.
Lời giải:
- Cách vẽ hình 9: Vẽ tam giác ABC trước rồi vẽ tam giác ACD (hoặc ngược lại).
+ Vẽ đoạn thẳng AC = 3cm.
+ Trên cùng một nửa mặt phẳng bờ AC, vẽ cung tròn tâm A bán kính 1,5cm với cung tròn tâm C bán kính 2cm.
+ Hai cung tròn trên cắt nhau tại B.
+ Vẽ các đoạn thẳng AB, AC ta được tam giác ABC.
Tương tự ta vẽ được tam giác ACD. Tứ giác ABCD là tứ giác cần vẽ.
- Cách vẽ hình 10: Vẽ tam giác MQP trước rồi vẽ tam giác MNP. Vẽ tam giác MQP biết hai cạnh và góc xen giữa.
+ Trên tia Qx lấy điểm M sao cho QM = 2cm.
+ Trên tia Qy lấy điểm P sao cho QP = 4cm.
+ Vẽ đoạn thẳng MP, ta được tam giác MPQ.
Vẽ tam giác MNP biết ba cạnh, với cạnh MP đã vẽ. Tương tự cách vẽ hình 10, điểm N là giao điểm của hai cung tròn tâm M, P bán kính lần lượt là 1,5cm; 3cm.. Tứ giác MNPQ là tứ giác cần vẽ.
Đố. Đố em tìm thấy vị trí của "kho báu" trên hình 11, biết rằng kho báu nằm tại giao điểm các đường chéo của tứ giác ABCD, trong đó các đỉnh của tứ giác có tọa độ như sau: A(3; 2), B(2; 7), C(6; 8), D(8; 5).
Lời giải:
Đánh dấu các số thứ tự (như trục tọa độ) và kí hiệu các điểm như trên hình. Các bước làm như sau:
- Xác định các điểm A, B, C, D trên hình vẽ với A(3; 2); B(2; 7); C(6; 8); D(8; 5).
- Vẽ tứ giác ABCD
- Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.
- Xác định tọa độ của điểm K: K(5; 6)
Vậy vị trí kho báu có tọa độ K(5; 6) trên hình vẽ.
►► CLICK NGAY vào nút TẢI VỀ dưới đây để giải toán lớp 8 SGK trang 64, 65, 66, 67 file word, pdf hoàn toàn miễn phí.