Hướng dẫn giải sách giáo khoa Toán lớp 8 trang 76, 77, 78, 79, 80 tập 1: Đường trung bình của tam giác, của hình thang đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài học sắp tới được tốt nhất.
Vẽ tam giác ABC bất kì rồi lấy trung điểm D của AB. Qua D vẽ đường thẳng song song với BC, đường thẳng này cắt AC ở E. Bằng quan sát, hãy nêu dự đoán về vị trí của điểm E trên cạnh AC.
Lời giải
Dự đoán: E là trung điểm cạnh AC
Vẽ tam giác ABC bất kì rồi lấy trung điểm D của AB, trung điểm E của AC. Dùng thước đo góc và thước chia khoảng để kiểm tra rằng ∠(ADE) = ∠B và DE =
Lời giải
Tính độ dài đoạn BC trên hình 33.
Lời giải
BC = 2 DE
Cho hình thang ABCD (AB // CD). Qua trung điểm E của AD kẻ đường thẳng song song với hai đáy, đường thẳng này cắt AC ở I, cắt BC ở F (h.37). Có nhận xét gì về vị trí của điểm I trên AC, điểm F trên BC ?
Lời giải
Áp dụng định lí 1 đường trung bình của tam giác
ΔADC có E là trung điểm AD và EI song song với cạnh DC
⇒ Điểm I là trung điểm AC
ΔABC có I là trung điểm AC và FI song song với cạnh AB
⇒ điểm F là trung điểm BC
Tính x trên hình 40.
Lời giải:
Dựa vào hình vẽ ta thấy rằng AD ⊥ DH, CH ⊥ DH, BE ⊥ DH
Suy ra, AD // BE // CH do đó ADHC là hình thang.
Ta thấy rằng, B là trung điểm của AC và BE // AD // CH
Suy ra BE là đường trung bình của hình thang ADHC, ta có:
⇒ 64 = 24 + x ⇒ x = 40
Tính x trên hình 41.
Lời giải:
+ K̂ = Ĉ (= 50º)
⇒ IK // BC (Vì có hai góc đồng vị bằng nhau)
+ KA = KC (= 8cm) nên K là trung điểm AC
Đường thẳng IK đi qua trung điểm cạnh AC và song song với cạnh BC nên đi qua trung điểm cạnh AB
⇒ I là trung điểm AB
⇒ IA = IB hay x = 10cm.
Tính khoảng cách AB giữa hai mũi của compa trên hình 42, biết rằng C là trung điểm của OA, D là trung điểm của OB và CD = 3cm.
Lời giải:
Ta có: CO = CA (gt)
DO = DB (gt)
⇒ CD là đường trung bình của ΔOAB
⇒ AB = 2CD = 2.3 = 6cm.
Cho hình 43. Chứng minh rằng AI = IM.
Lời giải:
ΔBDC có BE = ED và BM = MC
⇒ EM là đường trung bình của ΔBDC
⇒ EM // DC hay EM // DI.
ΔAEM có DI // EM (cmt) và AD = DE (gt)
⇒ IA = IM (Theo định lý 1)
Tìm x trên hình 44.
Hình 44
Lời giải:
* Ba đường thẳng MP, NQ và IK cùng vuông góc với PQ
=> MP// IK// NQ
=> Tứ giác MPQN là hình thang
Do đường thẳng IK đi qua trung điểm cạnh bên MN và song song với hai đáy nên K là trung điểm PQ.
Nên PK = KQ =5dm
Vậy x = 5dm
Hai điểm A và B thuộc cùng một nửa mặt phẳng có bờ là đường thẳng xy. Khoảng cách từ điểm A đến xy bằng 12cm, khoảng cách từ điểm B đến xy bằng 20cm. Tính khoảng cách từ trung điểm C của AB đến xy.
Lời giải:
Gọi P, Q, K lần lượt là chân đường vuông góc hạ từ A, B, C xuống xy.
+ AP ⊥ xy và BQ ⊥ xy ⇒ AP // BQ
⇒ Tứ giác ABQP là hình thang.
+ CK ⊥ xy ⇒ CK // AP//BQ
+ Hình thang ABQP có AC = CB (gt) và CK // AP // BQ
⇒ PK = KQ
⇒ CK là đường trung bình của hình thang
⇒ CK = (AP + BQ)/2.
Mà AP = 12cm, BQ = 20cm ⇒ CK = 16cm.
Vậy khoảng cách từ trung điểm C của AB đến xy bằng 16cm.
Hình thang ABCD có đáy AB, CD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, BD. Chứng minh ba điểm E, K, F thẳng hàng.
Lời giải:
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Tính x, y trên hình 45 trong đó AB // CD // EF // GH.
Hình 45
Lời giải:
+ Tính x :
AB // EF nên tứ giác ABFE là hình thang
Hình thang ABFE có: CA = CE và DB = DF
⇒ CD là đường trung bình của hình thang ABFE
⇒ CD = (AB + EF)/2
hay x = (8 + 16)/2 = 12(cm)
+ Tính y:
CD // GH nên tứ giác CDHG là hình thang
Hình thang CDHG có : EC = EG, FD = FH
⇒ EF là đường trung bình của hình thang CDHG
⇒ EF = (CD + GH)/2
hay (x + y)/2 = 16cm ⇒ x + y = 32cm
Mà x = 12cm ⇒ y = 20cm.
Vậy x = 12cm và y = 20cm.
Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.
a) So sánh các độ dài EK và CD, KF và AB
b) Chứng minh rằng
Lời giải:
a) + ΔADC có: AE = ED (gt) và AK = KC (gt)
⇒ EK là đường trung bình của ΔADC
⇒ EK = CD/2
+ ΔABC có AK = KC (gt) và BF = FC (gt)
⇒ KF là đường trung bình của ΔABC
⇒ KF = AB/2.
b) Ta có: EF ≤ EK + KF =
(Bổ sung:
Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt BD tại I, cắt AC ở K.
a) Chứng minh rằng AK = KC, BI = ID.
b) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
Lời giải:
a) + Hình thang ABCD có EA = ED, FB = FC (gt)
⇒ EF là đường trung bình của hình thang ABCD.
⇒ EF // AB // CD
+ ΔABC có BF = FC (gt) và FK // AB (cmt)
⇒ AK = KC
+ ΔABD có: AE = ED (gt) và EI // AB (cmt)
⇒ BI = ID
b) + Vì EF là đường trung bình của hình thang ABCD.
⇒ EF = (AB + CD)/2 = (6 + 10)/2 = 8cm.
+ ΔABD có AE = ED, DI = IB
⇒ EI là đường trung bình của ΔABD
⇒ EI = AB/2 = 6/2 = 3(cm)
+ ΔABC có CF = BF, CK = AK
⇒ KF là đường trung bình của ΔABC
⇒ KF = AB /2 = 6/2 = 3cm
+ Lại có: EI + IK + KF = EF
⇒ IK = EF – EI – KF = 8 – 3 – 3 = 2cm
►► CLICK NGAY vào nút TẢI VỀ dưới đây để giải toán lớp 8 SGK trang trang 76, 77, 78, 79, 80 tập 1 file word, pdf hoàn toàn miễn phí.