Giải bài tập SGK Toán lớp 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình được chúng tôi sưu tầm và đăng tải. Đây là lời giải kèm phương pháp giải hay các bài tập trong chương trình SGK Toán 9. Là tài liệu tham khảo hữu ích dành cho các em học sinh và quý thầy cô giáo tham khảo và đối chiếu đáp án chính xác, chuẩn bị tốt cho việc tiếp thu, giảng dạy bài học mới đạt hiệu quả.
Giải toán 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình
Hãy nhắc lại các bước giải bài toán bằng cách lập phương trình.
Lời giải
Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: giải phương trình
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận
Giải hệ phương trình (I) và trả lời bài toán đã cho.
Lời giải
Vậy số cần tìm là 74
Lập phương trình biểu thị giả thiết: Mỗi giờ, xe khách đi nhanh hơn xe tải 13 km.
Lời giải
Mỗi giờ xe khách đi nhanh hơn xe tải là 13 km nên ta có phương trình
y - x = 13 ⇔ y = 13 + x
Viết các biểu thức chứa ẩn biểu thị quãng đường mỗi xe đi được, tính đến khi hai xe gặp lại nhau. Từ đó suy ra phương trình biểu thị giả thiết quãng đường từ TP. Hồ Chí Minh đến TP. Cần Thơ dài 189 km.
Lời giải
Quãng đường xe khách đi được đến khi gặp nhau là: 9/5 y (km)
Quãng đường xe tải đi được đến khi gặp nhau là: 14/5 x (km)
Theo giả thiết quãng đường từ TP. Hồ Chí Minh đến TP. Cần Thơ dài 189 km nên ta có phương trình
Giải hệ hai phương trình thu được trong câu hỏi 3 và câu hỏi 4 rồi trả lời bài toán.
Lời giải
Từ ?3 và ?4 ta có hệ phương trình
Vậy vận tốc của xe tải là 36 km/h
Vận tốc của xe khách là 49 km/h
Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124.
Lời giải
Gọi số lớn là x, số nhỏ là y (x, y ∈ N*); x,y > 124.
Tổng hai số bằng 1006 nên ta có: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình:
Vậy hai số tự nhiên phải tìm là 712 và 294.
Chú ý : Số bị chia = số chia. thương + số dư
Giải bài toán cổ sau:
Quýt, cam mười bảy quả tươi
Đem chia cho một trăm người cùng vui
Chia ba mỗi quả quýt rồi
Còn cam mỗi quả chia mười vừa xinh
Trăm người, trăm miếng ngọt lành
Quýt, cam mỗi loại tính rành là bao?
Phương pháp giải:
Giải bài toán bằng cách lập hệ phương trình:
Bước 1: Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2: Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3: Đối chiếu nghiệm với điều kiện và kết luận.
Lời giải
Gọi số cam là x, số quýt là y (x, y ∈ N* ; x < 17, y < 17).
Quýt, cam 17 quả tươi ⇒ x + y = 17.
Mỗi quả quýt chia ba ⇒ Có 3y miếng quýt
Chia mười mỗi quả cam ⇒ Có 10x miếng cam
Tổng số miếng tròn 100 ⇒ 10x + 3y = 100.
Ta có hệ phương trình:
Vậy có 7 quả cam và 10 quả quýt.
Một ôtô đi từ A và dự định đến B lức 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với dự đinh. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của ôtô tại A.
Lời giải
Gọi x (km) là độ dài quãng đường AB, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa.
Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
+ Với v = 35km/h thì thời gian đi hết quãng đường AB là : t = X/35 (giờ)
Ô tô đến chậm hơn 2 giờ so với dự định ⇒ X/35 = Y + 2 ⇔ x = 35y + 70.
+ Với v = 50 km/h thì thời gian đi hết quãng đường AB là : T = X/50 (giờ)
Ô tô đến sớm hơn 1h so với dự định ⇒ x/50 = y - 1 ⇔ x = 50y – 50.
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải Toán lớp 9 SGK Tập 2 trang 20, 21, 22 file Word, pdf hoàn toàn miễn phí!