Logo

Giải Toán lớp 9 trang 63, 64: Ôn tập chương 4 SGK Tập 2

Giải Toán lớp 9 trang 63, 64: Ôn tập chương 4 SGK Tập 2 hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách giáo khoa.
5.0
1 lượt đánh giá

Giải bài tập SGK Toán lớp 9 Ôn tập chương 4 được chúng tôi sưu tầm và đăng tải. Đây là lời giải kèm phương pháp giải hay các bài tập trong chương trình SGK Toán 9. Là tài liệu tham khảo hữu ích dành cho các em học sinh và quý thầy cô giáo tham khảo và đối chiếu đáp án chính xác, chuẩn bị tốt cho việc tiếp thu, giảng dạy bài học mới đạt hiệu quả.

Câu hỏi ôn tập chương 4

1. Hãy vẽ đồ thị của các hàm số y = 2x2, y = -2x2. Dựa vào đồ thị để trả lời các câu hỏi sau:

a) Nếu a > 0 thì hàm số y = ax2 đồng biến khi nào? Nghịch biến khi nào?

Với giá trị nào của x thì hàm số đạt giá trị nhỏ nhất? Có giá trị nào của x để hàm số đạt giá trị lớn nhất không?

Nếu a < 0 thì hàm số đồng biến khi nào? Nghịch biến khi nào? Với giá trị nào của x thì hàm số đạt giá trị lớn nhất? Có giá trị nào của x để hàm số đạt giá trị nhỏ nhất không?

b) Đồ thị của hàm số y = ax2 có những đặc điểm gì (trường hợp a > 0 , trường hợp a < 0)

Trả lời:

Vẽ hình:

a) Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị bào của x để hàm số đạt giá trị nhỏ nhất.

b) Đồ thị hàm số y = ax2 là đường cong (đặt tên là parabol) đi qua gốc tọa độ nhận trục tung Oy làm trục đối xứng.

Nếu a > 0 thì đồ thị nằm trên trục hoành, điểm O là điểm thấp nhất đồ thị (gọi là đỉnh parabol).

Nếu a < 0 thì đồ thị nằm bên dưới trục hoành, điểm O là điểm cao nhất của đồ thị.

2. Đối với phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0), hãy viết công thức tính Δ, Δ'.

Khi nào thì phương trình vô nghiệm?

Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.

Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.

Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt?

Trả lời:

Công thức tính Δ, Δ':

3. Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai

ax2 + bx + c = 0 (a ≠ 0)

Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình

1954x2 + 21x – 1975 = 0

Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình

2005x2 + 104x – 1901 = 0

Trả lời:

4. Nêu cách tìm hai số, biết tổng S và tích P của chúng.

Tìm hai số u và v trong mỗi trường hợp sau:

Trả lời:

5. Nêu cách giải phương trình trùng phương ax4 + bx2 + c = 0 (a ≠ 0)

Trả lời:

- Đặt ẩn phụ t = x2 (1) (điều kiện t ≥ 0).

Khi đó phương trình đã cho tương đương với một phương trình bậc 2 ẩn t là:

at2 + bt + c = 0 (2)

- Giải phương trình (2) để tìm t, so sánh với điều kiện.

- Thay giá trị t thỏa mãn vào (1) để tìm x.

Bài 54 (trang 63 SGK Toán 9 Tập 2):

Vẽ đồ thị của hai hàm số  và  trên cùng một hệ trục tọa độ.

a)Đường thẳng đi qua B(0; 4) và song song với trục Ox có dạng : y =4 .

Xét phương trình hoành độ giao điểm:

Vậy hoành độ của M là x=-4 và M’ là x =4

b) Tìm trên đồ thị của hàm số  điểm N có cùng hoành độ với M, điểm N’ có cùng hoành độ với M’. Đường thẳng NN’ có song song với Ox không? Vì sao? Tìm tung độ điểm N và N’ bằng hai cách:

- Ước lượng trên hình vẽ;

- Tính toán theo công thức.

Lời giải

- Bảng giá trị:

x -4 -2 0 2 4
y = 1/4x2 4 1 0 1 4
y = -1/4x2 -4 -1 0 -1 -4

- Vẽ đồ thị:

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

b) + Từ điểm M và M’ kẻ đường thẳng song song với trục Oy cắt đồ thị y = -1/4x2 tại N và N’.

+ MM’N’N là hình chữ nhật ⇒ NN’ // MM’ // Ox.

Vậy NN’ // Ox.

+ Tìm tung độ N và N’.

Từ hình vẽ ta nhận thấy : N(-4 ; -4) ; N’(4 ; -4).

Tính toán :

Bài 55 (trang 63 SGK Toán 9 Tập 2):

Cho phương trình: x2 - x - 2 = 0.

a) Giải phương trình.

b) Vẽ hai đồ thị y = x2 và y = x + 2 trên cùng một hệ trục tọa độ.

c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.

Lời giải

a) x2 – x – 2 = 0

Có a = 1; b = -1; c = -2 ⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 2.

Vậy tập nghiệm của phương trình là S = {-1; 2}

b) + Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).

+ Parabol y = x2 đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).

c) Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:

x= x + 2 <-> x2 - x - 2 = 0 (*)

Phương trình (*) chính là phương trình đã giải ở ý (a) Do đó hai nghiệm ở câu (a) chính là hoành độ giao điểm của hai đồ thị.

Bài 56 (trang 63 SGK Toán 9 Tập 2):

Giải các phương trình:

a) 3x4 – 12x2 + 9 = 0;

b) 2x4 + 3x2 – 2 = 0;

c) x4 + 5x2 + 1 = 0.

Lời giải

Cả ba phương trình trên đều là phương trình trùng phương.

a) 3x4 – 12x2 + 9 = 0 (1)

Đặt x2 = t, t ≥ 0.

(1) trở thành: 3t2 – 12t + 9 = 0 (2)

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm t1 = 1 và t2 = 3.

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x2 = 3 ⇒ x = ±√3.

+ t = 1 ⇒ x2 = 1 ⇒ x = ±1.

Vậy phương trình có tập nghiệm S = {-√3; -1; 1; √3}

b) 2x4 + 3x2 – 2 = 0 (1)

Đặt x2 = t, t ≥ 0.

(1) trở thành: 2t2 + 3t – 2 = 0 (2)

Giải (2) :

Có a = 2 ; b = 3 ; c = -2

⇒ Δ = 32 – 4.2.(-2) = 25 > 0

⇒ (2) có hai nghiệm

t1 = -2 < 0 nên loại.

Vậy phương trình có tập nghiệm 

c) x4 + 5x2 + 1 = 0 (1)

Đặt x2 = t, t > 0.

(1) trở thành: t2 + 5t + 1 = 0 (2)

Giải (2):

Có a = 1; b = 5; c = 1

⇒ Δ = 52 – 4.1.1 = 21 > 0

⇒ Phương trình có hai nghiệm:

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Bài 57 (trang 63 SGK Toán 9 Tập 2):

Giải các phương trình:

Lời giải

a) 5x2 – 3x + 1 = 2x + 11

⇔ 5x2 – 3x + 1 – 2x – 11 = 0

⇔ 5x2 – 5x – 10 = 0

Có a = 5; b = -5; c = -10 ⇒ a - b + c = 0

⇒ Phương trình có hai nghiệm: x1 = -1 và x2 = -c/a = 2.

Vậy phương trình có tập nghiệm S = {-1; 2}.

⇔ 6x2 – 20x = 5(x + 5)

⇔ 6x2 – 20x – 5x – 25 = 0

⇔ 6x2 – 25x – 25 = 0

Có a = 6; b = -25; c = -25

⇒ Δ = (-25)2 – 4.6.(-25) = 1225 > 0

⇒ Phương trình có hai nghiệm

Vậy phương trình có tập nghiệm 

⇔ x2 = 10 – 2x

⇔ x2 + 2x – 10 = 0

Có a = 1; b = 2; c = -10 ⇒ Δ’ = 12 – 1.(-10) = 11 > 0

⇒ Phương trình có hai nghiệm

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình có tập nghiệm  

⇔ (x + 0,5).(3x – 1) = 7x + 2

⇔ 3x2 + 1,5x – x – 0,5 = 7x + 2

⇔ 3x2 – 6,5x – 2,5 = 0.

Vậy phương trình có tập nghiệm S = {5/2}

⇒ Phương trình có hai nghiệm

Vậy phương trình có tập nghiệm 

Phương trình có hai nghiệm:

Vậy phương trình có tập nghiệm S = {2 - √2; 1 - √2}.

Bài 58 (trang 63 SGK Toán 9 Tập 2):

Giải các phương trình:

a) 1,2x3 – x2 – 0,2x = 0;

b) 5x3 – x2 – 5x + 1 = 0.

Lời giải

a) 1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm 

b) 5x3 – x2 – 5x + 1 = 0

⇔ x2(5x – 1) – (5x – 1) = 0

⇔ (x2 – 1)(5x – 1) = 0

⇔ (x – 1)(x + 1)(5x – 1) = 0

Vậy phương trình có tập nghiệm 

Bài 59 (trang 63 SGK Toán 9 Tập 2):

Giải phương trình bằng cách đặt ẩn phụ:

Lời giải

a) 2(x2 – 2x)2 + 3(x2 – 2x) + 1 = 0 (1)

Đặt x2 – 2x = t,

(1) trở thành : 2t2 + 3t + 1 = 0 (2).

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm t1 = -1; t2 = -c/a = -1/2.

+ Với t = -1 ⇒ x2 – 2x = -1 ⇔ x2 – 2x + 1 = 0 ⇔ (x – 1)2 = 0 ⇔ x = 1.

(1) trở thành: t2 – 4t + 3 = 0 (2)

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm t1 = 1; t2 = c/a = 3.

+ t = 1 ⇒ x + 1/x = 1 ⇔ x2 + 1 = x ⇔ x2 – x + 1 = 0

Có a = 1; b = -1; c = 1 ⇒ Δ = (-1)2 – 4.1.1 = -3 < 0

Phương trình vô nghiệm.

Bài 60 (trang 64 SGK Toán 9 Tập 2):

Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:

Lời giải

Theo định lý Vi-et ta có: phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2 thì:

Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.

Ở bài giải dưới đây ta sẽ sử dụng điều kiện: x1x2 = c/a

(Các bạn có thể làm cách 2 sử dụng điều kiện  x1 + x2 -b/a).

d) x2 - 2mx + m - 1 = 0 (1)

Vì x1 = 2 là một nghiệm của pt (1) nên:

22 - 2m.2 + m - 1 = 0

⇔ 4- 4 m+ m – 1 = 0

⇔ 3- 3m = 0

⇔ m = 1

Khi m = 1 ta có: x1.x2 = m - 1 (hệ thức Vi-ét)

⇔ 2.x2 = 0 (vì x1 = 2 và m = 1)

⇔ x2 = 0.

Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.

►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải bài tập Toán lớp 9 Phần Ôn tập chương 4 file Word, pdf hoàn toàn miễn phí!

Đánh giá bài viết
5.0
1 lượt đánh giá
Tham khảo thêm:
    CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
    Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
    Liên hệ quảng cáo: tailieucom123@gmail.com
    Copyright © 2020 Tailieu.com