Giải sách bài tập Toán lớp 7 tập 2 trang 26, 27: Nghiệm của đa thức một biến bao gồm đáp án và hướng dẫn giải chi tiết tương ứng với từng bài tập trong sách. Lời giải bài tập SBT Toán 7 này sẽ giúp các em học sinh ôn tập các dạng bài tập có trong sách giáo khoa. Sau đây mời các em cùng tham khảo lời giải chi tiết
Cho đa thức f(x) = x2 – 4x – 5. Chứng tỏ rằng x = -1; x = 5 là hai nghiệm của đa thức đó.
Lời giải:
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Tìm nghiệm của các đa thức sau:
a, 2x + 10
b, 3x - 1/2
c, x2 – x
Lời giải:
a, Ta có: 2x + 10 = 0 ⇔ 2x = -10 ⇔ x = -10 : 2 ⇔ x = -5
Vậy x = -5 là nghiệm của đa thức 2x + 10
b, Ta có: 3x - 1/2 = 0 ⇔ 3x = 1/2 ⇔ x = 1/2 : 3 = 1/6
Vậy x = 1/6 là nghiệm của đa thức 3x - 1/2
c, Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
Tìm nghiệm của các đa thức sau:
a, (x – 2)(x + 2)
b, (x – 1)(x2 + 1)
Lời giải:
a, Ta có: (x – 2)(x + 2) = 0 ⇔ x – 2 = 0 hoặc x + 2 = 0
x – 2 = 0 ⇔ x = 2
x + 2 = 0 ⇔ x = -2
Vậy x = 2 và x = -2 là các nghiệm của đa thức (x – 2)(x + 2)
b, Ta có: (x – 1)(x2 + 1) = 0
Vì x2 ≥ 0 với mọi giá trị của x ∈ R nên:
x2 + 1 > 0 với mọi x ∈ R
Suy ra: (x – 1)(x2 + 1) = 0 ⇔ x – 1 = 0 ⇔ x = 1
Vậy x = 1 là nghiệm của đa thức (x – 1)(x2 + 1)
Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức ax2 + bx + c.
Lời giải:
Thay x = 1 vào đa thức ax2 + bx + c, ta có:
a.12 + b.1 + c = a + b + c
Vì a + b + c = 0 nên a.12 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c khi a + b + c = 0
Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức ax2 + bx + c
Lời giải:
Thay x = -1 vào đa thức ax2 + bx + c, ta có:
a.(-1)2 + b.(-1) + c = a – b + c
Vì a – b + c = 0 ⇒ a.(-1)2 + b.(-1) + c = a – b + c = 0
Vậy x = -1 là nghiệm của đa thức ax2 + bx + c khi a – b + c = 0
Chứng tỏ rằng đa thức x2 + 2x + 2 không có nghiệm
Lời giải:
Ta có: x2 + 2x + 2 = x2 + x + x + 1 + 1
= x(x + 1) + (x + 1) + 1
= (x + 1)(x + 1) + 1 = (x + 1)2 + 1
Vì (x + 1)2 ≥ 0 với mọi x ∈ R, nên (x + 1)2 + 1 > 0 với mọi x ∈ R
Vậy đa thức x2 + 2x + 2 không có nghiệm.
Đố em tìm được số mà:
a, Bình phương của nó bằng chính nó
b, Lập phương của nó bằng chính nó
Lời giải:
a, Gọi số cần tìm là a.
Ta có: a2 = a ⇔ a2 – a = 0 ⇔ a (a – 1) = 0 ⇔ a = 0 hoặc a – 1 = 0
Vậy số cần tìm là 0 hoặc 1.
b, Gọi số cần tìm là b.
Ta có: b3 = b ⇔ b3 – b = 0 ⇔ b (b2 – 1) = 0
⇔ b (b – 1)(b + 1) = 0
⇔ b = 0 hoặc b – 1 = 0 hoặc b + 1 = 0
⇔ b = 0 hoặc b = 1 hoặc b = -1
Vậy số cần tìm là 0 hoặc 1 hoặc -1.
CLICK NGAY vào nút TẢI VỀ dưới đây để tải Giải SBT Toán 7 trang 26, 27 file word, pdf hoàn toàn miễn phí