Giải bài tập SGK Toán lớp 9 bài 1: Góc ở tâm, số đo cung được chúng tôi sưu tầm và đăng tải. Đây là lời giải kèm phương pháp giải hay các bài tập trong chương trình SGK Toán 9. Là tài liệu tham khảo hữu ích dành cho các em học sinh và quý thầy cô giáo tham khảo và đối chiếu đáp án chính xác, chuẩn bị tốt cho việc.
Giải Toán lớp 9 SGK Tập 2 trang 68, 69, 70
Hãy vẽ một đường tròn rồi vẽ hai cung bằng nhau
Lời giải
Kẻ AC, BD là hai đường kính bất kì của đường tròn (O)
Ta có:
Hãy chứng minh đẳng thức
Lời giải
Vì C nằm trên cung nhỏ AB nên OC nằm giữa OA và OB
tiếp thu, giảng dạy bài học mới đạt hiệu quả.
Kim giờ và kim phút của đồng hồ tạo thành một góc ở tâm có số đo là bao nhiêu độ vào những thời điểm sau:
a) 3 giờ; b) 5 giờ; c) 6 giờ;
d) 12 giờ; e) 20 giờ?
Lời giải
Trên mặt đồng hồ người ta chia thành 12 phần bằng nhau. Góc ở tâm tạo bởi hai kim giữa hai số liền nhau là:
360o : 12 = 30o
a) Thời điểm 3 giờ (hình a) thì góc ở tâm có số đo là: 3.30o = 90o
b) Thời điểm 5 giờ (hình b) thì góc ở tâm có số đo là: 5. 30o = 150o
c) Thời điểm 6 giờ (hình c) thì góc ở tâm có số đo là: 6.30o = 180o
d) Thời điểm 12 giờ (hình d) thì góc ở tâm có số đo là: 0o
e) Thời điểm 20 giờ (hình e) thì góc ở tâm có số đo là: 4.30o= 120o
Cho hai đường thẳng xy và st cắt nhau tại O, trong các góc tạo thành có góc 40o. Vẽ một đường tròn tâm O. Tính số đo của các góc ở tâm xác định bởi hai trong bốn tia gốc O.
Lời giải
Trên các hình 5, 6 hãy dùng dụng cụ đo góc để tìm số đo cung AmB.
Từ đó, tính số đo cung AnB tương ứng.
Phương pháp giải:
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+ Số đo của cung lớn bằng hiệu của 360º và số đo của cung nhỏ (có chung hai mút với cung lớn).
Lời giải
Xem hình 7. Tính số đo của góc ở tâm AOB và số đo cung lớn AB.
Phương pháp giải:
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+ Số đo của cung lớn bằng hiệu của 360º và số đo của cung nhỏ (có chung hai mút với cung lớn).
Lời giải
Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M. Biết góc AMB = 35o.
a) Tính số đo của góc ở tâm tạo bởi bán kính OA, OB.
b) Tính số đo mỗi cung AB (cung lớn và cung nhỏ).
Phương pháp giải:
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+ Số đo của cung lớn bằng hiệu của 360º và số đo của cung nhỏ (có chung hai mút với cung lớn).
Lời giải
a) Góc ở tâm tạo bởi OA và OB là góc AOB.
Tứ giác OAMB có:
Cho tam giác đều ABC. Gọi O là tâm của đường tròn đi qua đỉnh A, B, C.
a) Tính số đo các góc ở tâm tạo bởi hai trong ba bán kính OA, OB, OC.
b) Tính số đo các cung tạo bởi hai trong ba điểm A, B, C.
Phương pháp giải:
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
Lời giải
a) Vì tam giác ABC là tam giác đều nên
O tâm đường tròn ngoại tiếp tam giác ABC nên O là giao điểm 3 đường trung trực 3 cạnh- đồng thời O là giao điểm 3 đường phân giác của tam giác ABC
b)
Suy ra,số đo các cung lớn AB, AC và BC là: 3600 - 1200 = 2400.
Cho hai đường tròn cùng tâm O với bán kính khác nhau. Hai đường thẳng đi qua O cắt hai đường tròn đó tại các điểm A, B, C, D, M, N, P, Q (h.8).
a) Em có nhận xét gì về số đo của các cung nhỏ AM, CP, BN, DQ?
b) Hãy nêu tên các cung nhỏ bằng nhau.
c) Hãy nêu tên hai cung lớn bằng nhau.
Hình 8
Phương pháp giải:
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
Lời giải
b) Các cung nhỏ có số đo bằng nhau là:
Trong đường tròn lớn:
Trong đường tròn nhỏ:
c) Hai cung lớn
* Chú ý : Phân biệt : so sánh hai cung và số đo hai cung.
So sánh hai cung trong trường hợp hai cung trong một đường tròn hoặc trong hai đường tròn có bán kính bằng nhau.
Còn so sánh số đo hai cung : ta luôn so sánh được.
Mỗi khẳng định sau đây đúng hay sai? Vì sao?
a) Hai cung bằng nhau thì số đo bằng nhau.
b) Hai cung có số đo bằng nhau thì bằng nhau.
c) Trong hai cung, cung nào có số đo lớn hơn là cung lớn.
d) Trong hai cung trên một đường tròn, cung nào có số đo nhỏ hơn thì nhỏ hơn.
Phương pháp giải:
Ta chỉ so sánh hai cung trong cùng một đường tròn hay trong hai đường tròn bằng nhau.
+ Hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau.
+ Trong hai cung, cung nào có số đo lớn hơn được gọi là cung lớn hơn.
Lời giải
a) Đúng. Dựa vào cách so sánh hai cung (SGK trang 68).
Chú ý: Khi ta nói hai cung bằng nhau, nghĩa là hai cung này so sánh được (tức chúng cùng nằm trong một đường tròn hoặc trong hai đường tròn bằng nhau). Do đó, theo cách so sánh hai cung đã biết thì hai cung bằng nhau thì số đo bằng nhau.
b) Sai. Nếu hai cung này nằm trong hai đường tròn có bán kính khác nhau thì ta không thể so sánh hai cung.
c) Sai. (Lí luận như câu b)
d) Đúng. (Lí luận như câu a)
Trên đường tròn tâm O lấy ba điểm A, B, C sao cho góc AON = 100o sđ cung AC = 45o. Tính số đo của cung nhỏ BC và cung lớn BC. (Xét cả hai trường hợp: điểm C nằm trên cung nhỏ AB, điểm C nằm trên cung lớn AB).
Lời giải
* Trường hợp 1 . Điểm C nằm trên cung lớn AB.
Do điểm C nằm trên cung lớn AB nên tia OA nằm giữa hai tia OB và OC.
Do góc AOB > góc AOC nên tia OA nằm giữa hai tia OB và OC hay A nằm trên cung BC.
Suy ra: góc BOC = góc BOA + góc AOC = 1000+ 450 = 1450
Khi đó, số đo cung nhỏ BC là 1450 ( bằng góc ở tâm BOC )
Số đo cung lớn BC là: 3600 - 1450 = 2150
* Trường hợp 2: Điểm C nằm trên cung nhỏ AB
Vì điểm C nằm trên cung nhỏ AB nên OC nằm giữa OA và OB
=> góc AOB = góc AOC + góc BOC
Ta có: góc BOC = góc AOB - góc AOC = 1000- 450 = 550
Khi đó, số đo cung nhỏ BC là 550
Số đo cung lớn BC là: 3600- 550 = 3050.
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải Toán lớp 9 SGK Tập 2 Bài 1: Góc ở tâm. Số đo cung file Word, pdf hoàn toàn miễn phí!