Nội dung lời giải bài tập trong SGK Toán 12 Bài 1: Sự đồng biến nghịch biến của hàm số được trình bày rõ ràng, dễ hiệu từ đội ngũ chuyên gia giàu kinh nghiệm với phương pháp giải nhanh, dễ hiểu sẽ giúp các em cải thiện hiệu quả làm bài dạng toán sự đồng biến nghịch biến của hàm số.
Tham khảo thêm một số tài liệu ôn tập toán lớp 12 khác:
Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [(-π)/2; 3π/2] và các hàm số y = |x| trên khoảng (-∞; +∞).
Lời giải:
- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:
Các khoảng tăng: [(-π)/2,0], [π, 3π/2].
Các khoảng giảm: [0, π ],.
- Hàm số y = |x| trên khoảng (-∞; +∞)
Khoảng tăng: [0, +∞)
Khoảng giảm (-∞, 0].
Xét các hàm số sau và đồ thị của chúng:
a) y = -x2/2 (H.4a) b) y = 1/x (H.4b)
Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.
Lời giải:
Khẳng định ngược lại với định lí trên có đúng không ? Nói cách khác, nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó có nhất thiết phải dương (âm) trên đó hay không ?
Lời giải:
Xét hàm số y = x3 có đạo hàm y’ = 3x2 ≥ 0 với mọi số thực x và hàm số đồng biến trên toàn bộ R. Vậy khẳng định ngược lại với định lý trên chưa chắc đúng hay nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó không nhất thiết phải dương (âm) trên đó.
Xét sự đồng biến, nghịch biến của hàm số:
a) y = 4 + 3x – x2
b) y = 1/3.x3 + 3x2 - 7x -2
c) y = x4 - 2x2 + 3
d) y = -x3 + x2 – 5
Lời giải:
a) Tập xác định : D = R
y' = 3 – 2x
y’ = 0 ⇔ 3 – 2x = 0 ⇔ x = 3/2
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).
b) Tập xác định : D = R
y' = x2 + 6x - 7
y' = 0 ⇔ x = -7 hoặc x = 1
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).
c) Tập xác định: D = R
y'= 4x3 – 4x.
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x.(x – 1)(x + 1) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; -1) và (0 ; 1); đồng biến trong các khoảng (-1 ; 0) và (1; +∞).
d) Tập xác định: D = R
y'= -3x2 + 2x
y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).
...
Nội dung giải bài tập còn tiếp, mời các em xem full tại file tải về miễn phí...
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích hỗ trợ ôn luyện thi môn toán khác được cập nhật liên tục tại chuyên trang của chúng tôi.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải bài tập Toán 12 Bài 1: Sự đồng biến nghịch biến của hàm số (Đầy đủ) file Word, pdf hoàn toàn miễn phí!