Phần này giúp các em giải các dạng bài tập liên quan đến cực trị của hàm số lớp 12 bằng phương pháp giải hay, ngắn gọn, dễ hiểu từ đội ngũ chuyên gia giàu kinh nghiệm biên soạn và chia sẻ. Nội dung hướng dẫn giải bám sát chương trình sách giáo khoa (SGK) Giải tích lớp 12, mời các em tham khảo chi tiết dưới đây.
Tham khảo một số tài liệu học tập lớp 12 (được xem nhiều):
Dựa vào đồ thị (H.7, H.8), hãy chỉ ra các điểm tại đó mỗi hàm số sau có giá trị lớn nhất (nhỏ nhất):
a) y = -x2 + 1 trong khoảng (-∞; +∞);
b) y = x/3(x+ 3)2 trong các khoảng (1/2; 3/2) và (3/2; 4).
Lời giải:
a) Tại x = 0 hàm số có giá trị lớn nhất bằng 1.
Xét dấu đạo hàm:
b) Tại x = 1 hàm số có giá trị lớn nhất bằng 4/3.
Tại x = 3 hàm số có giá trị nhỏ nhất bằng 0.
Xét dấu đạo hàm:
Giả sử f(x) đạt cực đại tại xo. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số
Lời giải:
Với Δx > 0 Ta có:
Với Δx < 0 Ta có:
Vậy f’(xo) = 0.
a) Sử dụng đồ thị, hãy xem xét các hàm số sau đây có cực trị hay không.
• y = -2x + 1;
• y = x/3(x-3)2 (H.8).
b) Nêu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm.
Lời giải:
a,Hàm số y = -2x + 1 không có cực trị.
Hàm số y = x/3 (x-3)2 đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3.
b, Nếu hàm số có cực trị thì dấu của đạo hàm bên trái và bên phải điểm cực trị sẽ khác nhau.
Chứng minh hàm số y = |x| không có đạo hàm tại x = 0. Hàm số có đạt cực trị tại điểm đó không ?
Lời giải:
Vậy không tồn tại đạo hàm của hàm số tại x = 0.
Nhưng dựa vào đồ thị của hàm số y = |x|. Ta có hàm số đạt cực trị tại x = 0.
Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm s f(x) = x(x2 – 3).
Lời giải:
1. TXĐ: D = R
2. f’(x) = 3x2 – 3. Cho f’(x) = 0 ⇔ x = 1 hoặc x = -1.
3. Ta có bảng biến thiên:
Hàm số đạt cực đại tại x = -1 và giá trị cực đại là 2
Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu là -2.
Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:
a) y = 2x3 + 3x2 - 36x - 10
b) y = x4 + 2x2 - 3;
c) y = x + 1/x
d) y = x3(1 - x)2;
Lời giải:
a) TXĐ: D = R
y' = 6x2 + 6x - 36
y' = 0 ⇔ x = -3 hoặc x = 2
Bảng biến thiên:
Kết luận :
Hàm số đạt cực đại tại x = -3 ; yCĐ = 71
Hàm số đạt cực tiểu tại x = 2; yCT = -54.
b) TXĐ: D = R
y'= 4x3 + 4x = 4x(x2 + 1) = 0;
y' = 0 ⇔ x = 0
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3
hàm số không có điểm cực đại.
c) TXĐ: D = R \ {0}
y' = 1. 1/x2
y' = 0 ⇔ x = ±1
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = -1; yCĐ = -2;
hàm số đạt cực tiểu tại x = 1; yCT = 2.
d) TXĐ: D = R
y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’
= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’
= 3x2(1 – x)2 - 2x3(1 – x)
= x2.(1 – x)(3 – 5x)
y' = 0 ⇔ x = 0; x = 1 hoặc x = 3/5
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = 3/5
hàm số đạt cực tiểu tại xCT = 1.
(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)
e) Tập xác định: D = R.
y' = 0 ⇔ x = 1/2
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 1/2.
Áp dụng Quy tắc 2, hãy tìm các điểm cực trị của hàm số sau:
a) y = x4 - 2x2 + 1 ;
b) y = sin2x – x
c) y = sinx + cosx ;
d) y = x5 - x3 - 2x + 1
Lời giải:
a) TXĐ: D = R.
+ y' = 4x3 - 4x
y' = 0 ⇔ 4x(x2 – 1) = 0 ⇔ x = 0 hoặc x = ±1.
+ y" = 12x2 - 4
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại của hàm số.
y"(1) = 8 > 0 ⇒ x = 1 là điểm cực tiểu của hàm số.
y"(-1) = 8 > 0 ⇒ x = -1 là điểm cực tiểu của hàm số.
b) TXĐ: D = R
+ y' = 2cos2x – 1;
+ y" = -4.sin2x
⇒
⇒
c) TXĐ: D = R
+ y’ = cos x – sin x.
+ y’’ = -sin x – cos x =
⇒
⇒
d) TXĐ: D = R
+ y'= 5x4 - 3x2 - 2
y' = 0 ⇔ 5x4 – 3x2 – 2 = 0
⇔ x = ±1.
+ y" = 20x3 - 6x
y"(-1) = -20 + 6 = -14 < 0
⇒ x = -1 là điểm cực đại của hàm số.
y"(1) = 20 – 6 = 14 > 0
⇒ x = 1 là điểm cực tiểu của hàm số.
Nội dung giải bài tập Toán 12 Cực trị của hàm số còn tiếp, mời các em xem full tại file tải về miễn phí...
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích đầy đủ các môn được cập nhật liên tục tại chuyên trang của chúng tôi.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về hướng dẫn giải bài tập Toán 12 Bài 2: Cực trị của hàm số file Word, pdf hoàn toàn miễn phí!