Logo

Giải bài tập Toán Lớp 10 SGK trang 62 (Đại số) chi tiết nhất

Hướng dẫn giải các bài tập Toán Lớp 10 SGK trang 62 hay, ngắn gọn từ đội ngũ chuyên gia giàu kinh nghiệm chia sẻ miễn phí, hỗ trợ các em ôn luyện và đối chiếu đáp án chính xác.
5.0
0 lượt đánh giá

Chia sẻ miễn phí phương giải dạng toán phương trình quy về phương trình bậc nhất, bậc hai ngắn gọn, dễ dàng áp dụng với các bài toán liên quan từ đội ngũ chuyên gia có nhiều năm kinh nghiệm. Hy vọng là tài liệu tham khảo hữu ích dành cho các em học sinh tham khảo và đối chiếu đáp án chính xác. 

Giải bài tập Toán 10 SGK trang 62 (Đại số):

Bài 2: Phương trình quy về phương trình bậc nhất, bậc 2

Bài 1 (trang 62 SGK Đại số 10): 

Giải các phương trình:

Hướng dẫn giải chi tiết:

Bài 2 (trang 62 SGK Đại số 10): 

Giải và biện luận các phương trình sau theo tham số m:

a) m(x - 2) = 3x + 1 ;

b) m2x + 6 = 4x + 3m ;

c) (2m + 1)x - 2m = 3x - 2.

Hướng dẫn giải chi tiết:

a) m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

+ Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất 

b) m2x + 6 = 4x + 3m

⇔ m2.x – 4x = 3m – 6

⇔ (m2 – 4).x = 3m – 6 (2)

+ Xét m2 – 4 ≠ 0 ⇔ m ≠ ±2, phương trình (2) có nghiệm duy nhất:

+ Xét m2 – 4 = 0 ⇔ m = ±2

Với m = 2, pt (2) ⇔ 0x = 0 , phương trình có vô số nghiệm

Với m = –2, pt (2) ⇔ 0x = –12, phương trình vô nghiệm.

Kết luận:

+ m = 2, phương trình có vô số nghiệm

+ m = –2, phương trình vô nghiệm

+ m ≠ ±2, phương trình có nghiệm duy nhất 

c) (2m + 1)x – 2m = 3x – 2

⇔ (2m + 1)x – 3x = 2m – 2

⇔ (2m + 1 – 3).x = 2m – 2

⇔ (2m – 2).x = 2m – 2 (3)

+ Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất 

+ Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.

Kết luận :

+ Với m = 1, phương trình có vô số nghiệm

+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.

Kiến thức áp dụng

Để giải và biện luận phương trình quy được về phương trình bậc nhất, ta cần :

+ Đưa phương trình về dạng a.x = b bằng cách chuyển hết những số hạng chứa x về bên trái, chuyển hết những số hạng tự do về bên phải.

+ Xét a ≠ 0, phương trình có nghiệm duy nhất x = b/a

+ Xét a = 0, nếu b = 0, pt có vô số nghiệm ; nếu b ≠ 0, pt vô nghiệm.

+ Kết luận.

Bài 3 (trang 62 SGK Đại số 10): 

Có hai rổ quýt chứa số quýt bằng nhau. Nếu lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng 1/3 của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu?

Hướng dẫn giải chi tiết:

Gọi số quýt ban đầu ở mỗi rổ là x (quả)

Muốn lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở mỗi rổ lúc đầu phải nhiều hơn 30 quả hay x > 30.

Khi đó rổ thứ nhất còn x – 30 quả; rổ thứ hai có x + 30 quả.

Vì số quả ở rổ thứ hai bằng 1/3 bình phương số quả còn lại ở rổ thứ nhất nên ta có phương trình:

Giải phương trình (1):

Vì x > 30 nên x = 45 thỏa mãn.

Vậy ban đầu mỗi rổ có 45 quả cam.

Kiến thức áp dụng

Đây là dạng bài giải bài toán bằng cách lập phương trình đã học ở lớp 8.

Bước 1: Lập phương trình:

+ Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

+ Lập phương trình biểu thị mối quan hệ giữa các đại lương.

Bước 2: Giải phương trình

Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không rồi kết luận.

→Còn tiếp:..............................

Tải miễn phí hướng dẫn giải chi tiết bài tập Toán 10 SGK trang 62 (Đại số) tại đường link dưới đây.

File tải miễn phí hướng dẫn giải chi tiết bài tập Toán 10 SGK trang 62 (Đại số):

Hy vọng tài liệu sẽ hữu ích cho các em học sinh và quý thầy cô tham khảo và đối chiếu đáp án chính xác.

Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích hỗ trợ ôn luyện thi môn toán như đề kiểm tra, hướng dẫn giải sách giáo khoa, vở bài tập được cập nhật liên tục tại chuyên trang của chúng tôi.

Đánh giá bài viết
5.0
0 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com