Giải bài tập trang 12 Sách giáo khoa Toán 8 tập 1: Hằng đẳng thức đáng nhớ với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8, các bài giải tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.
Dưới đây là phần hướng dẫn giải bài Hằng đẳng thức chi tiết mà chúng tôi đã chọn lọc và tổng hợp. Mời quý thầy cô cùng các em học sinh tham khảo:
Tính diện tích phần hình còn lại mà không cần đo.
Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?
Đáp án và hướng dẫn giải bài:
Diện tích của miếng tôn là (a + b)2
Diện tích của miếng tôn phải cắt là (a – b)2.
Phần diện tích còn lại là (a + b)2 – (a – b)2.
Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.
Nhận xét sự đúng, sai của kết quả sau:
x2 + 2xy + 4y2 = (x + 2y)2
Đáp án và hướng dẫn giải:
Nhận xét sự đúng, sai:
Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2
= x2 + 4xy + 4y2
Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) 9x2 – 6x + 1;
b) (2x + 3y)2 + 2.(2x + 3y) + 1.
Hãy nêu một đề bài tương tự.
Đáp án và hướng dẫn giải:
a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2
Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự. Chẳng hạn:
1 + 2(x + 2y) + (x + 2y)2
4x2 – 12x + 9…
16x2 y4 – 8xy2 +1
Tính nhanh:
a) 1012; b) 1992; c) 47.53.
Đáp án và hướng dẫn giải:
a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201
b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601
c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491.
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab;
(a – b)2 = (a + b)2 – 4ab.
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a . b = 12.
b) Tính (a + b)2, biết a – b = 20 và a . b = 3.
Đáp án và hướng dẫn giải:
a) (a + b)2 = (a – b)2 + 4ab
Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
Tính giá trị của biểu thức 49x2 – 70x + 25 trong mỗi trường hợp sau:
a) x = 5; b) x = 1/7.
Đáp án và hướng dẫn giải:
49x2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2
a) Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900
b) Với x = 1/7: (7 . 1/7 – 5)2 = (1 – 5)2 = (-4)2 = 16
Tính:
a) (a + b + c)2; b) (a + b – c)2;
c) (a – b – c)2
Bài giải:
a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 – 2(a + b)c + c2
= a2 + 2ab + b2 – 2ac – 2bc + c2
= a2 + b2 + c2 + 2ab – 2bc – 2ac.
c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.
Bình phương của một tổng: (A + B )2 = A2 + 2AB + B2
Bình phương của một hiệu: (A – B )2 = A2 – 2AB + B2
Hiệu của hai bình phương: A2 – B2 = (A +B ) (A-B)
CLICK NGAY vào TẢI VỀ dưới đây để download Giải toán lớp 8 SGK tập 1 trang 12 bài từ 1 đến 7 file word, pdf hoàn toàn miễn phí.