Logo

32 Câu hỏi trắc nghiệm Toán 12 Bài 2: Mặt cầu (Có đáp án)

Tổng hợp 32 Câu hỏi trắc nghiệm Toán 12 Bài 2: Mặt cầu có đáp án và lời giải chi tiết, chia sẻ các em phương pháp giải nhanh và chính xác các dạng bài tập trắc nghiệm môn Toán từ đội ngũ chuyên gia giàu kinh nghiệm biên soạn.
5.0
2 lượt đánh giá

Bộ câu hỏi và bài tập trắc nghiệm Toán 12 Bài 2: Mặt cầu được chúng tôi sưu tầm và tổng hợp bao gồm những dạng câu hỏi trọng tâm và thường xuất hiện trong bài kiểm tra quan trọng. Mời các em học sinh và quý thầy cô giáo theo dõi chi tiết dưới đây.

Bộ 30 bài tập trắc nghiệm Toán 12 Bài 2: Mặt cầu

Câu 1: Cho mặt cầu tâm O bán kính R và điểm A bất kì trong không gian. Điểm A không nằm ngoài mặt cầu khi và chỉ khi:

A. OA = R   

B. OA ≤ R   

C. OA < R   

D. OA > R

Câu 2: Cho hình chóp S.ABC có đáy là tam giác vuôg cân đỉnh B và BC = a, SA ⊥ (ABC), SA = 2a. Khẳng định nào sau đây là đúng?

A. Điểm S nằm trong mặt cầu tâm A bán kính a

B. Điểm S nằm ngoài mặt cầu tâm A bán kính 2a

C. Điểm C nằm trong mặt cầu tâm A bán kính 2a

D. Cả ba điểm S, B, C cùng nằm trong mặt cầu tâm A bán kính 2a.

Câu 3: Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) có nhiều hơn một điểm chung với mặt cầu (S) nếu :

A. h ≤ R   

B. h ≥ R   

C. h > R   

D. h < R

Câu 4: Cho mặt cầu (S) tâm O bán kính R và một đường thẳng d. Kí hiệu h là khoảng cách từ O đến đường thẳng d. Đường thẳng d có điểm chung với mặt cầu (S) nếu và chỉ nếu:

A. h ≤ R   

B. h = R   

C. h > R   

D. h < R

Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) theo a là:

A. 2a   

B. a    

C. a√2/2   

D. 2a√5/5

Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2AD = 2a. SA vuông góc với đáy, góc giữa cạnh bên SB và đáy là 45o . Bán kính mặt cầu tâm A cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a là:

Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a, SA vuông góc với đáy và SA = 2a. Bán kính mặt cầu tâm A tiếp xúc với SC theo a là :

Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA = AB = 2AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Bán kính mặt cầu tâm B cắt SC theo một dây có độ dài 2a là :

Câu 9: Cho hai quả cầu cùng bán kính là 5cm. Để đựng hai quả cầu Nam phải làm một hình hộp chữ nhật từ bìa carton. Hỏi trong các đáp án dưới đây, Nam cần ít nhất bao nhiêu xen-ti-mét vuông bìa carton để làm được chiếc hộp đó?

A. 300(cm2)   B. 1000(cm2)   C. 250(cm2)   D. 1250(cm2)

Câu 10: Trong các mệnh đề sau, mệnh đề nào sai?

A. Hình chóp có mặt cầu ngoại tiếp khi và chỉ khi hình chóp có đáy là một tứ giác nội tiếp được đường tròn.

B. Hình chóp có mặt cầu ngoại tiếp nếu nó là hình chóp tam giác

C. Hình chóp có mặt cầu ngoại tiếp nếu nó có các cạnh bên bằng nhau.

D. Hình chóp có mặt cầu ngoại tiếp nếu có cạnh bên vuông góc với đáy.

Câu 11: Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hình lăng trụ có mặtc ầu ngoại tiếp nếu đáy của nó là hình vuông

B. Hình lăng trụ có mặt cầu ngoại tiếp nếu nó là lăng trụ đứng

C. Hình lăng trụ có mặt cầu ngoại tiếp nếu nó có đáy là đa giác nội tiếp được đường tròn

D. Hình lăng trụ có mặt cầu ngoại tiếp nếu nó là lăng trụ đứng tam giác.

Câu 12: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu ngoại tiếp hình chóp là:

Câu 13: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Bán kính mặt cầu ngoại tiếp hình lập phương là:

Câu 14: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

Câu 15: Tính bán kính của mặt cầu ngoại tiếp hình chóp tam giác đều S,ABC , biết các cạnh đáy có độ dài bằng a , cạnh bên SA = a√3 .

Câu 16: Một hình lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a. Tính bán kính mặt cầu ngoại tiếp hình lăng trụ đó.

Câu 17: Cho đường thẳng a và điểm A cách đường thẳng a một khoảng bằng 4cm. Trong các mặt cầu đi qua A và tiếp xúc với đường thẳng a, mặt cầu (S) có diện tích nhỏ nhất thì diện tích đó bằng :

A. 4π(cm2)   

B. 16π/3(cm2)   

C. 16π(cm2)   

D. 64π(cm2)

Câu 18: Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) và mặt cầu (S) có điểm chung nếu và chỉ nếu :

A. h < R    

B. h = R   

C. h ≤ R    

D. h ≥ R

Câu 19: Trong không gian cho đường thẳng Δ và điểm O cách Δ một khoảng bằng 20cm. Mặt cầu (S) tâm O cắt đường thẳng Δ theo một dây có độ dài 30cm có bán kính r bằng :

A. r = 45cm  

B. r = 30cm    

C. r = 25cm    

D. r = 20cm

Câu 20: Cho hình chóp tam giác đều S.ABC có SA tạo với đáy một góc bằng 30o và SA=2a. Trong các điểm S, B, C điểm nào nằm trong mặt cầu tâm A bán kính 3a.

A. Không điểm nào   

C. Chỉ hai điểm B và C

B. Chỉ điểm S   

D. Cả ba điểm

Câu 21: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SAB là tam giác đều. Bán kính mặt cầu tâm A cắt SB theo một dây có độ dài a là:

A. a√13/2   

B. 2a   

C. 2a√2   

D. a√3

Câu 22: Cho đường tròn (C) ngoại tiếp một tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH , ta được một mặt cầu. Thể tích của khối cầu tương ứng là:

Câu 23: Cho tam giác ABC vuông tại A có BC = 2a và B^ = 30° . Quay tam giác vuông này quanh trục AB , ta được một hình nón đỉnh B . Gọi S1 là diện tích toàn phần của hình nón đó và S2 là diện tích mặt cầu có đường kính AB . Khi đó, tỉ số  là:

Câu 24:Tính bán kính của mặt cầu ngoại tiếp hình tứ diện đều cạnh a.

Câu 25: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 2AD = 2a, SA vuông góc với đáy, SA = a. Bán kính mặt cầu ngoại tiếp hình chóp là :

Câu 26:Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy và SA = a.Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC .

Câu 27: Cho hình chóp tứ giác đều S.ABCD có góc giữa SA và đáy là 60o , SA = 2a. Bán kính mặt cầu ngoại tiếp hình chóp là :

Câu 28:Cho khối chóp tam giác S.ABC có SA = 3, SB = 4, SC = 5 và SA, SB, SC đôi một vuông góc. Khối cầu ngoại tiếp tứ diện S.ABC có thể tích là:

Câu 29: Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC = a√2 và góc giữa A’B và mặt phẳng (ABC) là 60o . Bán kính của mặt cầu ngoại tiếp lăng trụ là :

Câu 30:Cho hình chóp S.ABCD có đáy ABCD là hình vuông, tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD theo a .

Câu 31: Tính bán kính của mặt cầu ngoại tiếp hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.

Câu 32: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A và AB = SB = a , SB vuông góc với mặt phẳng (ABC). Bán kính nhỏ nhất của mặt cầu tiếp xúc với đường thẳng SC và AB là :

Đáp án và lời giải câu hỏi trắc nghiệm Toán 12 Bài 2: Mặt cầu

1. B 2. C 3. D 4. A 5. D 6. C 7. B 8. C 9. B 10. D 11. D
12. C 13. C 14. B 15. D 16. C 17. C 18. D 19. C 20. C 21. A 22. C
23. A 24. C 25. D 26. C 27. A 28. B 29. B 30. D 31. A 32. C  

Câu 1:

Chọn đáp án B

Câu 2:

Từ giả thiết ta có: SA = 2a; AB = a và AC = a√2 .

Chọn đáp án C

Câu 3:

Từ vị trí tương đối của một mặt phẳng với mặt cầu

Chọn đáp án D

Câu 4:

Từ vị trí tương đối của một đường thẳng và mặt cầu ta có đường thẳng d có điểm chung với mặt cầu (S) khi và chỉ khi đường thẳng d tiếp xúc hoặc cắt mặt cầu (S).

Chọn đáp án A

Câu 5:

Ta có mặt cầu S(A;r) tiếp xúc với mặt phẳng (SBC) khi và chỉ khi r = d(A; (SBC)) .

Hạ AH ⊥ SB tại H. Do BC ⊥ AB và BC ⊥ SA nên BC ⊥ (SAB) , suy ra BC ⊥ AH .

Mặt khác AH ⊥ SB nên AH ⊥ (SBC) hay d(A; (SBC)) = AH Xét tam giác vuông SAB ta có:

Chọn đáp án D

Câu 6:

Ta có mặt cầu S(A;r) cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a khi và chỉ khi ta có

Ta có:

Hạ AK ⊥ BD tại K, hạ AH ⊥ SK tại H. Do BD ⊥ AK và BD ⊥ SA nên BD ⊥ (SAK) , suy ra BD ⊥ AH. Mặt khác AH ⊥ SK nên ta có AH ⊥ (SBDB) hay d(A; (SBD)) = AH. Xét tam giác vuông SAK và tam giác vuông ABD ta có:

 

Khi đó ta có:

Chọn đáp án C

Câu 7:

Ta có mặt cầu S(A ;r) tiếp xúc với đường thẳng SC khi và chỉ khi ta có r = d(A; SC).

Xét tam giác vuông ABC ta có AC = a√2 . Hạ AH ⊥ SC tại H. Xét tam giác vuông SAC ta có :

Chọn đáp án B

Câu 8:

Do (SAB) ⊥ (ABCD) và (SAD) ⊥ (ABCD) ta có SA ⊥ (ABCD). Theo định lí ba đường vuông góc ta có BC ⊥ SB .

Hạ BH ⊥ SC tại H. Xét tam giác vuông SBC ta có:

Ta có mặt cầu S(B;r) cắt đường thẳng SC theo một dây cung có độ dài 2a khi và chỉ khi ta có

Chọn đáp án C

Câu 9:

Hình hộp chữ nhật đựng được hai quả cầu bán kính 5cm thì độ dài các cạnh ít nhất là 10cm, 10cm, 20cm. Khi đó ta có: Stp = 2 x 102 + 4 x 10 x 20 = 1000(cm2) .

Chọn đáp án B

Câu 10:

Hình chóp có mặt cầu ngoại tiếp khi và chỉ khi hình chóp đó có đáy là một đa giác nội tiếp được đường tròn nên mệnh đề A và B đúng. Hình chps có các cạnh bên bằng nhau có hình chiếu vuông góc của đỉnh lên mặt đáy là tâm đường tròn ngoại tiếp đáy nên hình chóp đó có đáy nội tiếp được đường tròn và do đó đáp án C đúng.

Chọn đáp án D

Câu 11:

Chọn đáp án D

Câu 12:

Theo định lí ba đường vuông góc ta có tam giác SBC, SDC lần lượt vuông tại B, D. Gọi I là trung điểm của SC. Từ các tam giác SAC, SBC, SDC vuông ta có:

Vậy I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là

Chọn đáp án C

Câu 13:

Ta có:

Ta nhận thấy tâm I của mặt cầu ngoại tiếp hình lập phương chính là tâm của hình lập phương đó. Do đó I chính là trung điểm của AC’ và mặt cầu ngoại tiếp hình lập phương có bán kính là

Chọn đáp án C

Câu 14:

Câu 15:

Chọn đáp án D

Câu 16:

Cho lăng trụ tam giác đều ABC.A'B'C' .

Gọi G, G; lần lượt là tâm của hai đáy ABC và A'B'C' .

Ta có GG' chính là trục của các tam giác ABC và A'B'C' .

Gọi O là trung điểm của GG' thì O cách đều 6 đỉnh của hình lăng trụ

nên là tâm của mặt cầu ngoại tiếp hình lăng trụ. Bán kính mặt cầu là R = OA .

Xét tam giác OAG vuông tại G , ta có:

Câu 17:

Gọi S(I ;r) là mặt cầu đi qua A và tiếp xúc với a.

Ta có diện tích của mặt cầu là : S = 4πr3 nên S đạt giá trị nhỏ nhất khi và chỉ khi r đạt giá trị nhỏ nhất.

Gọi tiếp điểm của đường thẳng a và mặt cầu là H và hình chiếu vuông góc hạ từ A lên đường thẳng A là A’. Khi đó ta có :

2r = IA + IH ≥ AH ≥ AA' => r ≥ AA'/2 = 2(cm)

Vậy r đạt giá trị nhỏ nhất bằng 2cm khi I là trung điểm của AA’.

Khi đó mặt cầu (S) có diện tích nhỏ nhất là S = 4π22 = 16π(cm2).

Chọn đáp án C

Câu 18:

Từ vị trí tương đối của một mặt phẳng và mặt cầu ta có mặt phẳng (P) có điểm chung với mặt cầu (S) khi và chỉ khi mặt phẳng (P) tiếp xúc hoặc cắt mặt cầu (S)

Chọn đáp án D

Câu 19:

Chọn đáp án C

Câu 20:

Gọi O là tâm của tam giác đều ABC. Ta có:

góc SAO = 30o => AO = a√3 => AB = AC = 3a

Chọn đáp án C

Câu 21:

Gọi S(A;r) là mặt cầu tâm A cắt đường thẳng SB theo một dây có độ dài a, khi đó ta có:

Gọi H là trung điểm của SB. Do tam giác SAB đều nên AH ⊥ SB hay AH là khoảng cách từ A đến SB. Xét tam giác đều SAB ta có :

Chọn đáp án C

Câu 22:

 

Bán kính mặt cầu được tạo thành khi quay đường tròn (C) quanh trục AH là

Chọn đáp án C

Câu 23:

 

Chọn đáp án A

Câu 24;

Chọn đáp án C

Câu 25:

Theo định lí ba đường vuông góc ta có hai tam giác SBC và SDC lần lượt vuông góc tại B, D. Gọi I là trung điểm của SC thì ta có : IA = IB = ID = SC/2 = IS = IC nên I là tâm mặt cầu ngoại tiếp hình chóp. Bán kính mặt cầu ngoại tiếp hình chóp là

Chọn đáp án D

Câu 26:

Câu 27:

Gọi O là tâm của hình vuông ABCD. Khi đó SO ⊥ (ABCD) và SO là trục của đường tròn ngoại tiếp hình vuông ABCD. Từ giả thiết ta có :

=> SO = SA.sin60o = a√3

Trong mặt phẳng (SAO), đường trung trực của SA cắt SO tại I. Khi đó I cách đều các đỉnh của hình chóp nên I là tâm mặt cầu ngoại tiếp hình chóp. Gọi M là trung điểm của SA, khi đó ta có :

Chọn đáp án A

Câu 28:

Gọi M,N lần lượt là trung điểm SC, AB

Vì ΔSAB vuông góc tại S nên N là tâm đường tròn ngoại tiếp ΔSAB .

Trong mặt phẳng (MSN) dựng hình chữ nhật MSNO thì ON là trục đường tròn ngoại tiếp ΔSAB và OM là đường trung trực của đoạn SC trong mặt phẳng (OSC)

Câu 29:

Trong tam giác vuông ABC ta có

 

=> AA' = AB.tan60o = a√3.

Gọi I là tâm của hình chữ nhật BCC’B’ và M là trung điểm của BC. Do tam giác ABC vuông tại A nên M là tâm đường tròn ngoại tiếp tam giác ABC và do đó IM là trục của đường tròn ngoại tiếp đáy ABC và I cách đều B, B’ nên I là tâm của mặt cầu ngoại tiếp lăng trụ. Khi đó ta có :

Chọn đáp án B

Câu 30:

Gọi H là trung điểm của AB, do tam giác SAB đều nên SH ⊥ AB mà (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD)

Gọi O là tâm của hình vuông ABCD, d là đường thẳng qua O và song song SH thì d ⊥ (ABCD) hay d là trục đường tròn ngoại tiếp hình vuông ABCD

Trong mặt phẳng (SAB) từ G kẻ đường thẳng vuông góc với (SAB) cắt d tại I thì I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD, bán kính R = IS.

Câu 31:

Cho hình chóp tứ giác đều S.ABCD.

Gọi H là tâm đáy

thì SH là trục của hình vuông .

Gọi M là trung điểm của ABCD .

Trong mp (SDH) kẻ trung trực của đoạn SD cắt SH tại O

Thì OS = OA = OC = OD

Nên O chính là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD .

Bán kính mặt cầu là R = SO .

Ta có :

Chọn đáp án A

Câu 32:

Mặt cầu S(I,r) tiếp xúc với AB, SC lần lượt tại T, K. Khi đó ta có:

2r = IT + IK ≥ d(AB; SC) => r ≥ d(AB, SC)/2

Dựng hình bình hành ABDC, khi đó ta có ABDC là hình vuông cạnh a. Hạ BH vuông góc với SD tại H. Khi đó ta có BH ⊥ (SCD).

Suy ra: d(SC; AB) = d(AB, (SCD)) = d(B; (SCD))

Chọn đáp án C

►►► CLICK NGAY vào nút TẢI VỀ dưới đây để tải về Bộ 30 Câu hỏi trắc nghiệm Toán 12 Bài 2: Mặt cầu có đáp án file PDF hoàn toàn miễn phí!

Đánh giá bài viết
5.0
2 lượt đánh giá
Tham khảo thêm:
    Có thể bạn quan tâm
    CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
    Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
    Liên hệ quảng cáo: tailieucom123@gmail.com
    Copyright © 2020 Tailieu.com