Giải bài tập Sách giáo khoa Toán lớp 8 tập 1: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp được tổng hợp và chọn lọc với lời giải chi tiết, chính xác theo khung chương trình sách giáo khoa Toán lớp 8. Hi vọng đây sẽ là những kiến thức bổ ích dành cho các em học sinh ôn tập và củng cố kiến thức trong quá trình học tập.
Các bài giải với lời giải hay tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, kiến thức đã học:
Phân tích các đa thức sau thành nhân tử:
a) x3 – 2x2 + x;
b) 2x2 + 4x + 2 – 2y2;
c) 2xy – x2 – y2 + 16.
Đáp án và hướng dẫn giải bài
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2(x2 + 2x + 1) – 2y2
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 16 – (x – y)2 =42 – (x – y)2
= (4 – x + y)(4 + x – y)
Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n.
Đáp án và hướng dẫn giải bài
Ta có: (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 chia hết 5 nên 5n(5n + 4) chia hết 5 ∀n ∈ Z.
Phân tích các đa thức sau thành nhân tử:
a) x2 – 3x + 2;
(Gợi ý: Ta không áp dụng ngay các phương pháp đã học để phân tích nhưng nếu tách hạng tử -3x = – x – 2x thì ta có x2 – 3x + 2 = x2 – x – 2x + 2 và từ đó dễ dàng phân tích tiếp.
Cũng có thể tách 2 = – 4 + 6, khi đó ta có x2 – 3x + 2 = x2 – 4 – 3x + 6, từ đó dễ dàng phân tích tiếp)
b) x2 + x – 6;
c) x2 + 5x + 6.
Đáp án và hướng dẫn giải bài
a) x2 – 3x + 2 = a) x2 – x – 2x + 2 = x(x – 1) – 2(x – 1) = (x – 1)(x – 2)
Hoặc x2 – 3x + 2 = x2 – 3x – 4 + 6
= x2 – 4 – 3x + 6
= (x – 2)(x + 2) – 3(x -2)
= (x – 2)(x + 2 – 3) = (x – 2)(x – 1)
b) x2 + x – 6 = x2 + 3x – 2x – 6
= x(x + 3) – 2(x + 3)
= (x + 3)(x – 2).
c) x2 + 5x + 6 = x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
Phân tích các đa thức sau thành nhân tử:
a) x3 + 2x2y + xy2 – 9x;
b) 2x – 2y – x2 + 2xy – y2;
c) x4 – 2x2.
Đáp án và hướng dẫn giải bài
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x – √2)(x + √2).
Tìm x, biết:
a) ;
b) (2x – 1)2 – (x + 3)2 = 0;
c) x2(x – 3) + 12 – 4x = 0.
Đáp án và hướng dẫn giải bài:
a)
Hoặc x = 0
Hoặc x -1/2= 0 ⇒ x = 1/2
Hoặc x + 1/2= 0 ⇒ x = – 1/2
Vậy x = 0; x = – 1/2; x = 1/2.
b) (2x – 1)2 – (x + 3)2 = 0
[(2x – 1) – (x + 3)][(2x – 1) + (x + 3)] = 0
(2x – 1 – x – 3)(2x – 1 + x + 3) = 0
(x – 4)(3x + 2) = 0
Hoặc x – 4 = 0 ⇒ x = 4
Hoặc 3x + 2 = 0 ⇒ 3x = 2 => x = -2/3
Vậy x = 4; x = -2/3.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) – 4(x -3)= 0
(x – 3)(x2– 22) = 0
(x – 3)(x – 2)(x + 2) = 0
Hoặc x – 3 = 0 => x = 3
Hoặc x – 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
Tính nhanh giá trị của đa thức:
a) x2 + 1/2x + 1/16 tại x = 49,75;
b) x2 – y2 – 2y – 1 tại x = 93 và y = 6.
Đáp án và hướng dẫn giải bài
a) x2 + 1/2x+ 1/16 tại x = 49,75
Ta có: x2 + 1/2x + 1/16 = x2 + 2.1/4x + (1/4)2
= (x +1/4)2
Với x = 49,75: (49,75 +1/4)2
= (49,75 + 0,25)2 = 502 = 2500
b) x2 – y2 – 2y – 1 tại x = 93 và y = 6
Ta có: x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1)
= x2 – (y + 1)2 = (x – y – 1)(x + y + 1)
Với x = 93, y = 6: (93 – 6 – 1)(93 + 6 + 1) = 86 . 100 = 8600
Phân tích các đa thức sau thành nhân tử:
a) x2 – 4x + 3; b) x2 + 5x + 4
c) x2 – x – 6; d) x4 + 4
(Gợi ý câu d): Thêm và bớt 4x2 vào đa thức đã cho.
Đáp án và hướng dẫn giải
a) x2 – 4x + 3 = x2 – x – 3x + 3
= x(x – 1) – 3(x – 1) = (x -1)(x – 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) – 3(x + 2)
= (x + 2)(x – 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.
Bài giải:
Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)
Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.
1. Phương pháp: Ta tìm hướng giải bằng cách đọc kỹ đề bài và rút ra nhận xét để vận dụng các phương pháp đã biết: đặt nhân tử chung, dùng hằng đẳng thức, nhóm nhiều hạng tử và phối hợp chúng để phân tích đa thức thành nhân tử.
2. Chú ý: Nếu các hạng tử của đa thức có nhân tử chung thì ta nên đặt nhân tử chung ra ngoài dấu ngoặc để đa thức trong ngoặc đơn giản hơn rồi mới tiếp tục phân tích đến kết quả cuối cùng.
CLICK NGAY vào TẢI VỀ dưới đây để download hướng dẫn giải bài Toán lớp 8 SGK tập 1 trang 24, 25 file word, pdf hoàn toàn miễn phí.