Logo

Giải Toán lớp 7 VNEN Bài 8: Nghiệm của đa thức một biến

Giải Toán lớp 7 VNEN Bài 8: Nghiệm của đa thức một biến trang 56 - 58 chương 4 Tập 2 Phần Đại số ngắn gọn bao gồm hướng dẫn giải và đáp án các câu hỏi trong sách giáo khoa chương trình mới chính xác nhất, giúp các em tiếp thu bài học hiệu quả
5.0
0 lượt đánh giá

Hướng dẫn Giải bài tập Toán VNEN Bài 8: Nghiệm của đa thức một biến trang 56 đến 58 Đại số Tập 2 chương 4 sách giáo khoa lớp 7 chương trình mới chính xác, ngắn gọn và dễ hiểu dưới đây sẽ giúp các em học sinh trả lời các câu hỏi và giải các bài toán nhanh chóng, tiếp thu bài học trên lớp tốt hơn.

A. Hoạt động khởi động Bài 8: Nghiệm của đa thức một biến

Trang 56 SGK Toán lớp 7 VNEN chương 4 tập 2

a) Cho đa thức Q(x) = x2 – 2x + 3. Tính Q(-1); Q(3); Q(1)

b) Cho biết công thức đổi từ độ F sang độ C là C = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN. Tính xem nước đóng băng ở bao nhiêu độ F. (Biết rằng nước đóng băng ở 00C)

B. Hoạt động hình thành kiến thức Bài 8: Nghiệm của đa thức một biến

Câu 1. (trang 56 chương 4 tập 2 SGK Toán lớp 7 VNEN)

a) Xét đa thức P(x) = 2x + Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

- Tính P(- Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN)

b) Đọc kĩ nội dung sau (Sgk trang 56)

c) Thực hiện theo yêu cầu

- Giải thích tại sao x = - 1 và x = 1 là các nghiệm của đa thức Q(x) = x2 – 1.

- Kiểm tra xem x = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN có phải là nghiệm của đa thức P(x) = 5x + Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN hay không.

- Nếu cách kiểm tra một số a có phải là nghiệm của đa thức P(x) không.

- Giải thích tại sao đa thức G(x) = x2 + 3 không có nghiệm.

Trả lời:

a)Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

c) - Ta có: Q(-1) = (-1)2 – 1 = 0

và Q(1) = (1)2 – 1 = 0

Vì tại x = -1 và x = 1, đa thức Q(x) có giá trị bằng 0 nên chúng là các nghiệm của đa thức Q(x).

- Thay x = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN vào đa thức P(x) = 5x + Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN ta được:

Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN (khác 0) suy ra x = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN không phải là nghiệm của đa thức P(x).

- Để kiểm tra một số a có phải là nghiệm của đa thức P(x) không, ta đi tìm P(a).

+ Nếu P(a) = 0 thì x = a là nghiệm của P(x)

+ Nếu P(a) khác 0 thì x = a không là nghiệm của P(x).

- Đa thức G(x) = x2 + 3 không có nghiệm, vì tại x = b bất kỳ, ta luôn có:

G(b) = b2 + 3 >= 0 + 3 > 0

Câu 2. (trang 57 chương 4 tập 2 SGK Toán VNEN lớp 7)

Chú ý (Sgk trang 57)

b) Thực hiện theo yêu cầu

* x = - 2; x = 0 và x = 2 có phải là nghiệm của đa thức x3 – 4x hay không? Vì sao?

* Trong các số cho ở bảng sau, số nào là nghiệm của đa thức (ở cùng hàng)?

a) P(x) = 2x + Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

-Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

b) Q(x) = x2 – 2x – 3

3

1

-1

Từ kết quả của bài tập trên, hãy trả lời câu hỏi: Có thể tìm nghiệm của đa thức bằng cách nào?

Trả lời:

* Ta có:

- Thay x = - 2 vào đa thức x3 – 4x ta được (-2)3 – 4(-2) = 0

- Thay x = 0 vào đa thức x3 – 4x ta được (0)3 – 4(0) = 0

- Thay x = 2 vào đa thức x3 – 4x ta được (2)3 – 4(2) = 0

Vậy x = -2; x = 0 và x = 2 là các nghiệm của đa thức x3 – 4x.

* a) x = -Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN là nghiệm của đa thức P(x) = 2x + Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

b) x = 3 và x = -1 là các nghiệm của đa thức Q(x) = x2 – 2x – 3

Kết luận: Có thể tìm nghiệm của đa thức bằng cách tìm các giá trị của biến sao cho tại giá trị đó, giá trị chủa đa thữ bằng 0.

C. Hoạt động luyện tập Bài 8: Nghiệm của đa thức một biến

Câu 1. (trang 57 chương 4 tập 2 SGK Toán 7 VNEN)

Kiểm tra xem mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức sau không.

    P(x) = x2 – 4x + 3

Trả lời:

- Tại x = 1, đa thức P(x) có giá trị là: P(1) = (1)2 – 4(1) + 3 = 0

- Tại x = 3, đa thức P(x) có giá trị là: P(3) = (3)2 – 4(3) + 3 = 0

Vậy x = 1; x = 3 là một nghiệm của đa thức P(x)

Câu 2. (trang 57 chương 4 tập 2 SGK VNEN Toán lớp 7)

Trong tập hợp các số {1; 2; -1; 0}, số nào là nghiệm, số nào không phải là nghiệm của đa thức: R(x)= x4 + 2x3 – x2 + x – 3?

Trả lời:

- Xét: R(1) = (1)4 + 2(1)3 – (1)2 + 1 – 3 = 0

   R(2) = (2)4 + 2(2)3 – (2)2 + 2 – 3 = 27

   R(1) = (-1)4 + 2(-1)3 – (-1)2 + (-1) – 3 = - 6

   R(1) = (0)4 + 2(0)3 – (0)2 + 0 – 3 = - 3

Vậy tại x = 1, giá trị của đa thức R(x) = 0, nên x = 1 là nghiệm của đa thức R(x).

Tại x = 2, x = -1 và x = 0, giá trị của đa thức R(x) khác 0, nên chúng không phải là nghiệm của đa thức R(x).

Câu 3. (trang 57 chương 4 tập 2 SGK Toán VNEN 7)

a) Tìm nghiệm của mỗi đa thức sau:

- P(y) = 3y – 6;   - N(x) = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN – 2x;   - D(z) = z3 - 27

- M(x) = x2 – 4;   - C(y) = √2y + 3

b) Chứng tỏ rằng đa thức sau không có nghiệm: Q(x) = x4 + 1

Trả lời:

a) Ta có:

- P(y) = 0 ⇔ 3y – 6 = 0 ⇔ 3y = 6 ⇔ y = 2

Vậy S = {2}

- N(x) = 0 ⇔ Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN – 2x = 0 ⇔ 2x = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN ⇔ x = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

Vậy S = {Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN}

- D(z) = 0 ⇔ z3 - 27 = 0 ⇔ z3 = 27 ⇔ z = 3

Vậy S = {3}

- M(x) = 0 ⇔ x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = 2 và x = -2

Vậy S = {2; -2}

- C(y) = 0 ⇔ √2y + 3 = 0 ⇔ √2y = -3 ⇔ y = Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN

Vậy S= {Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến | Hay nhất Giải bài tập Toán 7 VNEN}

b) Tại x = a bất kỳ, ta luôn có: Q(a) = (a4) + 1 ≥ 0 + 1 > 0

Do đó tại x = a bất kỳ, giá trị của đa thức Q(x) luôn lớn hơn 0. Vậy đa thức Q(x) không có nghiệm.

D. Hoạt động vận dụng Bài 8: Nghiệm của đa thức một biến

Câu 1. (trang 57 SGK Toán 7 VNEN chương 4 tập 2)

Bạn Hùng nói: "Ta chỉ có thể viết được một đa thức

một biến có nghiệm bằng 1"

Bạn Sơn nói: "Có thể viết được nhiều đa thức một biết có nghiệm bằng 1"

Ý kiến em thế nào?

Trả lời:

Em đồng ý với ý kiến của bạn Sơn.

Ta có thể viết được nhiều đa thức một biến có nghiệm bằng 1 với nhiều bậc khác nhau, ví dụ như:

M(x) = x - 1;   N(x) = x2 – 4x + 3;   P(x) = x4 + 2x3 – x2 + x – 3 ...

Câu 2. (trang 58 SGK VNEN Toán lớp 7 chương 4 tập 2)

Hãy viết một đa thức sao cho nó:

a) Có một nghiệm duy nhất là x = -3

b) Chỉ có 2 nghiệm là x = 2 và x = -2

c) Không có nghiệm

Trả lời:

a) Đa thức có một nghiệm duy nhất là x = -3: P(x) = x3 + 27

b) Đa thức chỉ có 2 nghiệm x = 2 và x = -2: F(x) = x2 – 4

c) Đa thức không có nghiệm: K(x) = x4 + 5

E. Hoạt động tìm tòi mở rộng Bài 8: Nghiệm của đa thức một biến

Câu 1. (trang 58 SGK Toán lớp 7 VNEN chương 4 tập 2)

Cho đa thức A(x) = ax2 + bx + c (với a, b, c là các hằng số). Chứng minh rằng:

a) Nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức A(x);

b) Nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức A(x);

Trả lời:

a) Giả sử x = 1 là một nghiệm của đa thức A(x), ta có:

A(1) = 0 ⇔ a(1)2 + b(1) + c = 0 ⇔ a + b + c = 0 (đpcm)

Vậy a + b + c = 0 thì x = 1 là 1 nghiệm của đa thức A(x)

b) Giả sử x = -1 là nghiệm của đa thức A(x), ta có:

A(-1) = 0 ⇔ a(-1)2 + b(-1) + c = 0 ⇔ a – b + c = 0 (đpcm)

Vậy a – b + c = 0 thì x = -1 là 1 nghiệm của đa thức A(x)

Câu 2. (trang 58 SGK VNEN Toán lớp 7 chương 4 tập 2)

Cho hai đa thức P(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.

Trả lời:

Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm với P(x) và Q(x) đều có nghiệm.

Ví dụ: P(x) = 2x + 2 có nghiệm là x = -1

   Và Q(x) = 3x – 6 có nghiệm là x= 2

Ta có P(x) + Q(x) = (2x + 1) + (3x – 6) = 5x – 5

- Xét F(x) = 5x – 5:

F(x) = 0 ⇔ 5x – 5 = 0 ⇔ x = 1

Vậy x = 1 là nghiệm của đa thức F(x) hay nói cách khác x =1 là nghiệm của đa thức P(x) + Q(x) (đpcm)

Câu 3. (trang 58 SGK Toán 7 VNEN chương 4 tập 2)

Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho một ví dụ minh họa cho câu trả lời của em.

Trả lời:

Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm với M(x) và N(x) có cùng một nghiệm.

Ví dụ: M(x) = 4x + 8 có nghiệm là x = -2

   Và N(x) = 3x + 6 có nghiệm là x = -2

Ta có M(x) + N(x) = (4x + 8) + (3x + 6) = 7x +14

- Xét F(x) = 7x + 14:

F(x) = 0 ⇔ 7x + 14 = 0 ⇔ x = -2

Vậy x = - 2 là nghiệm của đa thức F(x) hay nói cách khác x = -2 là nghiệm của đa thức M(x) + N(x) với M(x) và N(x) có cùng một nghiệm. (đpcm)

►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về Giải Toán 7 VNEN Bài 8: Nghiệm của đa thức một biến file PDF hoàn toàn miễn phí.

Đánh giá bài viết
5.0
0 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com
DMCA.com Protection Status