Logo

Giải SBT toán 12 trang 133, 134 tập 1 Bài tập ôn tập chương 2 đầy đủ

Giải SBT toán lớp 12 trang 133, 134 tập 1 Bài tập ôn tập chương 2 đầy đủ hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách bài tập
5.0
0 lượt đánh giá

Với bộ tài liệu giải sách bài tập toán 12 tập 1 Bài tập ôn tập chương 2, hướng dẫn cách giải chi tiết cho từng câu hỏi, từng phần học bám sát nội dung chương trình SBT bộ môn Toán lớp 12. Nội dung chi tiết các em xem tại đây.

Giải Bài 2.65 trang 133 SBT toán 12 tập 1

Tìm tập xác định của các hàm số sau:

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) Hàm số xác định khi:

4x – 2 > 0 ⇔ 22x > 2 ⇔ x > 1/2

Vậy tập xác định là D = (1/2; +∞)

b) D = (−2/3; 1)

c) logx + log(x + 2) ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập xác định là D = [−1 + √2; +∞)

d) Tương tự câu c, D = [√2; +∞).

Giải Bài 2.66 trang 133 SBT toán 12 tập 1

Tính đạo hàm của các hàm số sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) y′ = −6(2 + 3x)−3

b)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 2.67 trang 133 SBT toán 12 tập 1

Giải các phương trình sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) x = 1

b) Đặt t = ex (t > 0), ta có phương trình t2 − 3t – 4 + 12/t = 0 hay

t3 − 3t2 − 4t + 12 = 0

⇔ (t − 2)(t + 2)(t − 3) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

d)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 2.68 trang 133 SBT toán 12 tập 1

Giải các phương trình sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) Với điều kiện x > 1 ta có phương trình:

ln(4x + 2) = ln[x(x − 1)]

⇔ 4x + 2 = x2 – x ⇔ x2 – 5x – 2 = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Với điều kiện x > 0, ta có phương trình

log2(3x + 1)[log3x − 2] = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Với điều kiện x > 0, ta có phương trình:

4log3x. 5log3x = 400

⇔ 20log3x = 202

⇔ log3x = 2 ⇔ x = 9 (thỏa mãn điều kiện)

d) Đặt t = lnx(x > 0), ta có phương trình:

t3 – 3t2 – 4t + 12 = 0 ⇔ (t – 2)(t + 2)(t – 3) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 2.69 trang 133 SBT toán 12 tập 1

Giải các phương trình sau:

a) e2+lnx = x + 3;

b) e4−lnx = x;

c) (5 − x).log(x − 3) = 0

Lời giải:

a) Với điều kiện x > 0, ta có phương trình

e2. elnx = x + 3

⇔ e2.x = x + 3

⇔x(e2 − 1) = 3

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(thỏa mãn điều kiện)

b) Tương tự câu a), x = e2

c) Với điều kiện x > 3 ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 2.70 trang 133 SBT toán 12 tập 1

Giải các bất phương trình mũ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) 2|x − 2| > 22|x+1|

⇔ |x−2| > 2|x+1|

⇔ x2 − 4x + 4 > 4(x2 + 2x + 1)

⇔ 3x2 + 12x < 0

⇔ −4 < x < 0

c) 22x − 2.2x + 8 < 23x. 21−x

⇔ 22x + 2.2x − 8 > 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) Đặt t = 3x (t > 0) , ta có bất phương trình

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì vế trái dương nên vế phải cũng phải dương, tức là 3t - 1 > 0.

Từ đó ta có hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó 1/3 < 3x ≤ 3. Vậy −1 < x ≤ 1.

Giải Bài 2.71 trang 134 SBT toán 12 tập 1

Giải các bất phương trình lôgarit sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−∞; −1) ∪ (2; 11/5)

d) ln|(x − 2)(x + 4)| ≤ ln8

⇔|x2 + 2x − 8| ≤ 8

⇔ −8 ≤ x2 + 2x – 8 ≤ 8

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 2.72 trang 134 SBT toán 12 tập 1

Giải các bất phương trình sau:

a) (2x − 7)ln(x + 1) > 0;

b) (x − 5)(logx + 1) < 0;

c) 2log32x + 5log22 + log2x – 2 ≥ 0

d) ln(3ex − 2) ≤ 2x

Lời giải:

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; +∞)

b) Tươngg tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log2x, ta có bất phương trình 2t3 + 5t2 + t – 2 ≥ 0 hay (t + 2)(2t2 + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ √2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [√2; +∞)

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; +∞)

Giải Bài 2.73 trang 134 SBT toán 12 tập 1

 

Tìm số tự nhiên n bé nhất sao cho:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì n là số tự nhiên bé nhất nên n = 30.

b) n = 4

c) n = 16

d) n = 15

►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về giải SBT toán lớp 12 tập 1 Bài tập ôn tập chương 2, file PDF hoàn toàn miễn phí.

Đánh giá bài viết
5.0
0 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com
DMCA.com Protection Status