Với bộ tài liệu giải sách bài tập toán Hình học 12 tập 1 Bài 1: Khái niệm về khối đa diện, hướng dẫn cách giải chi tiết cho từng câu hỏi, từng phần học bám sát nội dung chương trình SBT bộ môn Toán lớp 12. Nội dung chi tiết các em xem tại đây.
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai tứ diện A’ABD và CC’D’B’ bằng nhau.
Lời giải:
Xét 2 tứ diện A'ABD và CC'D'B'
Dùng phép đối xứng qua tâm O của hình hộp
Ta có:
A' đối xứng C qua O
A đối xứng C' qua O
B đối xứng D' qua O
D đối xứng B' qua O
Suy ra tứ diện A'ABD bằng tứ diện CC'D'B'.
Cho lăng trụ ABC.A’B’C’. Gọi E, F, G lần lượt là trung điểm của AA’, BB’, CC’. Chứng minh rằng các lăng trụ ABC.EFG và EFG.A’B’C’ bằng nhau
Lời giải:
Dùng phép tịnh tiến vectơ AE→ biến lăng trụ ABC.EFG thành lăng trụ EFG.A’B’C .
Chia hình chóp tứ giác đều thành tám hình chóp bằng nhau.
Lời giải:
Cho hình chóp tứ giác đều S.ABCD. Hai đường chéo AC, BD và hai đường thẳng nối trung điểm các cặp cạnh đối diện của hình vuông ABCD chia hình vuông ABCD thành tám tam giác bằng nhau. Xem mỗi tam giác đó là đáy của một hình chóp đỉnh S ta sẽ được tám hình chóp bằng nhau.
Chia một khối tứ diện đều thành bốn tứ diện bằng nhau.
Lời giải:
Cho tứ diện đều ABCD. Gọi G là giao điểm của các đường thẳng nối đỉnh với trọng tâm của mặt đối diện. Khi đó dễ thấy các tứ diện GABC, GBCD, GCDA, GDAB bằng nhau.
Chứng minh rằng mỗi hình đa diện có ít nhất 4 đỉnh.
Lời giải:
Gọi M1 là một mặt của hình đa diện (H). Gọi A, B, C là ba đỉnh liên tiếp của M1. Khi đó AB, BC là hai cạnh của (H). Gọi M2 là mặt khác với M1 và có chung cạnh AB với M1. Khi đó M2 còn có ít nhất một đỉnh D khác với A và B. Nếu D ≡ C thì M1 và M2 có hai cạnh chung AB và BC, điều này vô lý. Vậy D phải khác C. Do đó (H) có ít nhất bốn đỉnh A, B, C, D.
►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về giải bài tập SBT toán hình lớp 12 tập 1 Bài 1: Khái niệm về khối đa diện, file PDF hoàn toàn miễn phí.