Logo

Giải SBT Toán Hình học 12 trang 130, 131, 132 tập 2 Bài 3 đầy đủ

Giải SBT Toán Hình học lớp 12 trang 130, 131, 132 tập 2 Bài 3 đầy đủ hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách bài tập
5.0
1 lượt đánh giá

Với bộ tài liệu giải sách bài tập toán Hình học 12 tập 2 Bài 3: Phương trình đường thẳng, hướng dẫn cách giải chi tiết cho từng câu hỏi, từng phần học bám sát nội dung chương trình SBT bộ môn Toán lớp 12. Nội dung chi tiết các em xem tại đây.

Giải Bài 3.31 trang 130 SBT toán 12 tập 2

Viết phương trình tham số, phương trình chính tắc của đường thẳng Δ trong các trường hợp sau:

a) Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a→ = (3; 3; 1);

b) Δ đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng (α) : 2x – y + z + 9 = 0

c) Δ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)

Lời giải:

a) Phương trình tham số của đường thẳng Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương

a→ = (3; 3; 1) là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình chính tắc của Δ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Δ ⊥ (α) ⇒ aΔ = aα = (2; −1; 1)

Phương trình tham số của Δ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình chính tắc của Δ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Δ đi qua hai điểm C và D nên có vecto chỉ phương CD→ = (1; 2; 3)

Vậy phương trình tham số của Δ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình chính tắc của Δ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.32 trang 130 SBT toán 12 tập 2

Viết phương trình của đường thẳng Δ nằm trong mặt phẳng (α): x + 2z = 0 và cắt hai đường kính

Giải sách bài tập Toán 12 | Giải sbt Toán 12 và Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi A và B lần lượt là giao điểm của d1 và d2 với (α). Đường thẳng Δ cần tìm chính là đường thẳng AB.

Ta có: A(1 − t; t; 4t) ∈ d1

A ∈ (α) ⇔ t + 4.(2t) = 0 ⇔ t = 0

Suy ra: A(1; 0; 0)

Ta có : B(2 − t′; 4 + 2t′; 4) ∈ d2

B ∈ (α) ⇔ 4 +2t′ + 8 = 0 ⇔ t′ = −6

Suy ra B(8; -8; 4)

Δ đi qua A, B nên có vecto chỉ phương aΔ− = AB→ = (7; −8; 4)

Phương trình chính tắc của Δ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.33 trang 130 SBT toán 12 tập 2

Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) d và d' cắt nhau.

b) d và d' song song.

c) d và d' chéo nhau.

Giải Bài 3.34 trang 130 SBT toán 12 tập 2

Tìm a để hai đường thẳng sau đây song song:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Ta có ad = (1; a; −1) và ad' = (2; 4; −2)

d//d′ Giải sách bài tập Toán 12 | Giải sbt Toán 12 ⇒ a = 2

Khi đó M′0(1; 2; 2) thuộc d’ và M’0 không thuộc d. Vậy d // d’ ⇔ a = 2.

Giải Bài 3.35 trang 130 SBT toán 12 tập 2

Xét vị trí tương đối của đường thẳng d với mặt phẳng (α) trong các trường hợp sau

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12 và (α): x + 2y + z - 3 = 0

b) Giải sách bài tập Toán 12 | Giải sbt Toán 12 và (α): x + z + 5 = 0

c) Giải sách bài tập Toán 12 | Giải sbt Toán 12 và (α): x + y + z -6 = 0

Lời giải:

a) Thay x, y, z trong phương trình tham số của đường thẳng d vào phương trình tổng quát của mặt phẳng (α) ta được: t + 2(1 + 2t) + (1 – t) – 3 = 0

⇔ 4t = 0 ⇔ t = 0

Vậy đường thẳng d cắt mặt phẳng (α) tại M0(0; 1; 1).

b) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của (α) ta được: (2 – t) +(2 + t) + 5 = 0 ⇔ 0t = -9

Phương trình vô nghiệm, vậy đường thẳng d song song với (α)

c) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của (α) ta được: (3 – t) + (2 – t) + (1 + 2t) – 6 = 0 ⇔ 0t = 0

Phương trình luôn thỏa mãn với mọi t. Vậy d chứa trong (α) .

Giải Bài 3.36 trang 131 SBT toán 12 tập 2

Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng Δ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đường thẳng Δ đi qua điểm M0(1; 0; 0) và có vecto chỉ phương a→ = (2; 2; 1).

Ta có M0A→ = (0; 0; 1), n→ = a→ ∧ M0A→ = (2; −2; 0).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách từ điểm A đến Δ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.37 trang 131 SBT toán 12 tập 2

Cho đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và mặt phẳng (α) : 2x – 2y + z + 3 = 0

a) Chứng minh rằng Δ song song với (α).

b) Tính khoảng cách giữa Δ và (α)

Lời giải:

a) Ta có: aΔ = (2; 3; 2) và nα = (2; −2; 1)

aΔ.nα = 4 – 6 + 2 = 0 (1)

Xét điểm M0(-3; -1; -1) thuộc Δ , ta thấy tọa độ M0 không thỏa mãn phương trình của (α) . Vậy M0 ∉ (α) (2).

Từ (1) và (2) ta suy ra Δ // (α).

b) d(α,(α)) = d(M0,(α))

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa đường thẳng α và mặt phẳng (α) là 2/3.

Giải Bài 3.38 trang 131 SBT toán 12 tập 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải:

a) Gọi (α) là mặt phẳng chứa Δ và song song với Δ′. Hai vecto có giá song song hoặc nằm trên (α) là: a→ = (1; −1; 0) và a'→ = (−1; 1; 1). Suy ra nα = (−1; −1; 0)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(α) đi qua điểm M1(1; -1; 1) thuộc Δ và có vecto pháp tuyến: nα' = (1; 1; 0)

Vậy phưong trình của mặt phẳng (α) có dạng x – 1 + y + 1 = 0 hay x + y = 0

Ta có: M2(2; 2; 0) thuộc đường thẳng Δ′

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Hai đường thẳng Δ và Δ′ có phương trình là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình mặt phẳng (α) chứa Δ và song song với Δ′ là 9x + 5y – 2z – 22 = 0

Lấy điểm M’(0; 2; 0) trên Δ′ .

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng Δ và Δ′ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.39 trang 131 SBT toán 12 tập 2

Cho hai đường thẳng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Xét vị trí tương đối giữa Δ và Δ′;

b) Tính khoảng cách giữa Δ và Δ′.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Δ đi qua điểm M0(1; -3; 4) và có vecto chỉ phương a→ = (2; 1; −2)

Δ′ đi qua điểm M0’ (-2; 1; -1) và có vecto chỉ phương a'→ = (−4; −2; 4)

Ta có: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Δ′ song song với Δ

b) Ta có M0M′0 = (−3; 4; −5)

a→ = (2; 1; −2)

n→ = M0M′0 ∧ a→ = (−3; −16; −11)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.40 trang 131 SBT toán 12 tập 2

Cho điểm M(2; -1; 1) và đường thẳng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng Δ;

b) Tìm tọa độ điểm M’ đối xứng với M qua đường thẳng Δ.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Phương trình tham số của Δ: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét điểm H(1 + 2t; −1 − t; 2t) ∈ Δ

Ta có MH→ = (2t − 1; −t; 2t − 1)

aΔ = (2; −1; 2)

H là hình chiếu vuông góc của M trên Δ ⇔ MH→aΔ = 0

⇔ 2(2t − 1) + t + 2(2t − 1) = 0 ⇔ t = 4/9

Ta suy ra tọa độ điểm Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) H là trung điểm của MM’, suy ra xM’ + xM = 2xH

Suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tương tự, ta được

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.41 trang 132 SBT toán 12 tập 2

Cho điểm M(1; -1; 2) và mặt phẳng (α): 2x – y + 2z + 12 = 0

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;

b) Tìm tọa độ điểm M’ đối xứng với M qua mặt phẳng (α) .

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Phương trình tham số của đường thẳng Δ đi qua điểm M(1; -1; 2) và vuông góc với mặt phẳng (α): 2x – y + 2z + 12 = 0 là:

Δ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét điểm H(1 + 2t; -1 – t; 2 + 2t) ∈ Δ

Ta có H ∈ (α) ⇔ 2(1 + 2t) + (1 + t) + 2(2 + 2t) + 12 = 0 ⇔ t = −19/9

Vậy ta được Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) H là trung điểm của MM’, suy ra xM′ = 2xH – xM = −67/9

yM′ = 2yH – yM = 29/9

zM′ = 2zH – zM = −58/9

Vậy ta được Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.42 trang 132 SBT toán 12 tập 2

Cho hai đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lập phương trình đường vuông góc chung của d và d’.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình tham số của đường thẳng d: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vecto chỉ phương của hai đường thẳng d và d’lần lượt là a→ = (−1; 2; 3), a'→ = (1; −2; 0).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’; 1) trên d’ ta có MM'→ = (t′ + t; 1 − 2t′ − 2t; 1 − 3t).

MM’ là đường vuông góc chung của d và d’.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó MM'→ = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra đường vuông góc chung Δ của d và d’ có vecto chỉ phương u→ = (2; 1; 0)

Vậy phương trình tham số của Δ là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.43 trang 132 SBT toán 12 tập 2

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ, CD→ = ai→CB→ = aj→CC'→ = ak→

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)

CA'→ = (a; a; a), DD'→ = (0; 0; a)

 

Gọi (α) là mặt phẳng chứa CA'→ và song song với DD'→. Mặt phẳng (α) có vecto pháp tuyến là: n→ = CA'→ ∧ DD'→ = (a2; −a2; 0) hay x – y = 0

Phương trình tổng quát của (α) là x – y = 0.

Ta có:

d(CA′, DD′) = d(D,(α)) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.44 trang 132 SBT toán 12 tập 2

Cho mặt phẳng (α) : 2x + y + z – 1 = 0

và đường thẳng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi M là giao điểm của d và (α), hãy viết phương trình của đường thẳng Δ đi qua M vuông góc với d và nằm trong (α)

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét phương trình:

2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2

Vậy đường thẳng d cắt mặt phẳng (α) tại điểm M(2; 1/2; −7/2).

Ta có vecto pháp tuyến của mặt phẳng (α) và vecto chỉ phương của đường thẳng d lần lượt là nα = (2; 1; 1) và ad = (2; 1; −3).

Gọi aΔ là vecto pháp tuyến của Δ, ta có aΔ ⊥ nα và aΔ ⊥ ad.

Suy ra aΔ = nα ∧ nd = (−4; 8; 0) hay aΔ = (1; −2; 0)

Vậy phương trình tham số của Δ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải Bài 3.45 trang 132 SBT toán 12 tập 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Chứng minh rằng d1 và d2 cùng nằm trong một mặt phẳng (α).

b) Viết phương trình của (α).

Lời giải:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Ta có ad1 = (2; −3; 4) và ad2 = (3; 2; −2)

n→ = ad1 ∧ ad2 = (−2; 16; 13)

Lấy điểm M1(1; -2; 5) trên d1 và điểm M2(7; 2; 1) trên d2.

Ta có M1M2 = (6; 4; −4)

n→M1M2 = −12 + 64 – 52 = 0

Suy ra d1 và d2 cùng nằm trong mặt phẳng (α)

b) Mặt phẳng (α) chứa M1 và có vecto pháp tuyến là n→, vậy phương trình của (α) là:

–2(x – 1) + 16(y + 2) + 13(z – 5) = 0 – 2(x – 1) + 16(y + 2) + 13(z – 5) = 0 hay 2x – 16y – 13z + 31 = 0

►►CLICK NGAY vào nút TẢI VỀ dưới đây để tải về giải SBT toán hình lớp 12 tập 2 Bài 3: Phương trình đường thẳng, file PDF hoàn toàn miễn phí.

Đánh giá bài viết
5.0
1 lượt đánh giá
CÔNG TY CỔ PHẦN TRUYỀN THÔNG HDC VIỆT NAM
Tầng 3, toà nhà S3, Vinhomes Skylake, đường Phạm Hùng, quận Nam Từ Liêm, Hà Nội
Liên hệ quảng cáo: tailieucom123@gmail.com
Copyright © 2020 Tailieu.com
DMCA.com Protection Status